Home>>Signaling Pathways>> Neuroscience>> Ophthalmology>>Sphingosine-1-phosphate (d16:1)

Sphingosine-1-phosphate (d16:1) Sale

(Synonyms: C16 S1P, C16 Sphingosine-1-phosphate, S1P (d16:1)) 目录号 : GC44934

A derivative of S1P

Sphingosine-1-phosphate (d16:1) Chemical Structure

Cas No.:709026-60-8

规格 价格 库存 购买数量
500μg
¥2,827.00
现货
1mg
¥5,088.00
现货
5mg
¥16,395.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

C16 Sphingosine-1-phosphate (C16 S1P) is a derivative of sphingosine-1-phosphate that binds to S1P1/EDG-1, S1P3/EDG-3, and S1P2/EDG-5 receptors with affinities of 115%, 83%, and 103%, respectively, relative to S1P in CHO cells. C16 S1P was increased in postmortem primary open angle glaucoma trabecular meshwork samples.

Chemical Properties

Cas No. 709026-60-8 SDF
别名 C16 S1P, C16 Sphingosine-1-phosphate, S1P (d16:1)
Canonical SMILES CCCCCCCCCCC/C=C/[C@@H](O)[C@@H](N)COP(O)(O)=O
分子式 C16H34NO5P 分子量 351.4
溶解度 0.3 M NaOH: 4 mg/ml,DMF: <50 µ g/ml,DMSO: <50 µ g/ml,PBS (pH 7.2): <50 µ g/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8458 mL 14.2288 mL 28.4576 mL
5 mM 0.5692 mL 2.8458 mL 5.6915 mL
10 mM 0.2846 mL 1.4229 mL 2.8458 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The atypical sphingosine 1-phosphate variant, d16:1 S1P, mediates CTGF induction via S1P2 activation in renal cell carcinoma

FEBS J 2022 Sep;289(18):5670-5681.PMID:35320610DOI:10.1111/febs.16446.

Sphingosine 1-phosphate (S1P) is a lipid mediator with numerous biological functions. The term 'S1P' mainly refers to the sphingolipid molecule with a long-chain sphingoid base of 18 carbon atoms, d18:1 S1P. The enzyme serine palmitoyltransferase catalyses the first step of the sphingolipid de novo synthesis using palmitoyl-CoA as the main substrate. After further reaction steps, d18:1 S1P is generated. However, also stearyl-CoA or myristoyl-CoA can be utilised by the serine palmitoyltransferase, which at the end of the S1P synthesis pathway, results in the production of d20:1 S1P and d16:1 S1P respectively. We measured these S1P homologues in mice and renal tissue of patients suffering from renal cell carcinoma (RCC). Our experiments highlight the relevance of d16:1 S1P for the induction of connective tissue growth factor (CTGF) in the human renal clear cell carcinoma cell line A498 and human RCC tissue. We show that d16:1 S1P versus d18:1 and d20:1 S1P leads to the highest CTGF induction in A498 cells via S1P2 signalling and that both d16:1 S1P and CTGF levels are elevated in RCC compared to adjacent healthy tissue. Our data indicate that d16:1 S1P modulates conventional S1P signalling by acting as a more potent agonist at the S1P2 receptor than d18:1 S1P. We suggest that elevated plasma levels of d16:1 S1P might play a pro-carcinogenic role in the development of RCC via CTGF induction.

Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy

J Biol Chem 2020 Jan 24;295(4):1143-1152.PMID:31882542DOI:10.1074/jbc.RA119.011699.

Platinum-based therapeutics are used to manage many forms of cancer, but frequently result in peripheral neuropathy. Currently, the only option available to attenuate chemotherapy-induced neuropathy is to limit or discontinue this treatment. Sphingosine 1-phosphate (S1P) is a lipid-based signaling molecule involved in neuroinflammatory processes by interacting with its five cognate receptors: S1P1-5 In this study, using a combination of drug pharmacodynamic analysis in human study participants, disease modeling in rodents, and cell-based assays, we examined whether S1P signaling may represent a potential target in the treatment of chemotherapy-induced neuropathy. To this end, we first investigated the effects of platinum-based drugs on plasma S1P levels in human cancer patients. Our analysis revealed that oxaliplatin treatment specifically increases one S1P species, d16:1 S1P, in these patients. Although d16:1 S1P is an S1P2 agonist, it has lower potency than the most abundant S1P species (d18:1 S1P). Therefore, as d16:1 S1P concentration increases, it is likely to disproportionately activate proinflammatory S1P1 signaling, shifting the balance away from S1P2 We further show that a selective S1P2 agonist, CYM-5478, reduces allodynia in a rat model of cisplatin-induced neuropathy and attenuates the associated inflammatory processes in the dorsal root ganglia, likely by activating stress-response proteins, including ATF3 and HO-1. Cumulatively, the findings of our study suggest that the development of a specific S1P2 agonist may represent a promising therapeutic approach for the management of chemotherapy-induced neuropathy.

Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer's disease and vascular cognitive impairment

Alzheimers Res Ther 2020 Sep 30;12(1):122.PMID:32998767DOI:10.1186/s13195-020-00694-3.

Background: There has been ongoing research impetus to uncover novel blood-based diagnostic and prognostic biomarkers for Alzheimer's disease (AD), vascular dementia (VaD), and related cerebrovascular disease (CEVD)-associated conditions within the spectrum of vascular cognitive impairment (VCI). Sphingosine-1-phosphates (S1Ps) are signaling lipids which act on the S1PR family of cognate G-protein-coupled receptors and have been shown to modulate neuroinflammation, a process known to be involved in both neurodegenerative and cerebrovascular diseases. However, the status of peripheral S1P in AD and VCI is at present unclear. Methods: We obtained baseline bloods from individuals recruited into an ongoing longitudinal cohort study who had normal cognition (N = 80); cognitive impairment, no dementia (N = 160); AD (N = 113); or VaD (N = 31), along with neuroimaging assessments of cerebrovascular diseases. Plasma samples were processed for the measurements of major S1P species: d16:1, d17:1, d18:0, and d18:1, along with pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF). Furthermore, in vitro effects of S1Ps on cytokine expression were also studied in an astrocytoma cell line and in rodent primary astrocytes. Results: Of the S1Ps species measured, only d16:1 S1P was significantly reduced in the plasma of VaD, but not AD, patients, while the d18:1 to d16:1 ratios were increased in all cognitive subgroups (CIND, AD, and VaD). Furthermore, d18:1 to d16:1 ratios correlated with levels of IL-6, IL-8, and TNF. In both primary astrocytes and an astroglial cell line, treatment with d16:1 or d18:1 S1P resulted in the upregulation of mRNA transcripts of pro-inflammatory cytokines, with d18:1 showing a stronger effect than d16:1. Interestingly, co-treatment assays showed that the addition of d16:1 reduced the extent of d18:1-mediated gene expression, indicating that d16:1 may function to "fine-tune" the pro-inflammatory effects of d18:1. Conclusion: Taken together, our data suggest that plasma d16:1 S1P may be useful as a diagnostic marker for VCI, while the d18:1 to d16:1 S1P ratio is an index of dysregulated S1P-mediated immunomodulation leading to chronic inflammation-associated neurodegeneration and cerebrovascular damage.

Hepatitis C Virus Infection Upregulates Plasma Phosphosphingolipids and Endocannabinoids and Downregulates Lysophosphoinositols

Int J Mol Sci 2023 Jan 11;24(2):1407.PMID:36674922DOI:10.3390/ijms24021407.

A mass spectrometry-based lipidomic investigation of 30 patients with chronic hepatitis C virus (HCV) infection and 30 age- and sex-matched healthy blood donor controls was undertaken. The clustering and complete separation of these two groups was found by both unsupervised and supervised multivariate data analyses. Three patients who had spontaneously cleared the virus and three who were successfully treated with direct-acting antiviral drugs remained within the HCV-positive metabotype, suggesting that the metabolic effects of HCV may be longer-lived. We identified 21 metabolites that were upregulated in plasma and 34 that were downregulated (p < 1 × 10-16 to 0.0002). Eleven members of the endocannabinoidome were elevated, including anandamide and eight fatty acid amides (FAAs). These likely activated the cannabinoid receptor GPR55, which is a pivotal host factor for HCV replication. FAAH1, which catabolizes FAAs, reduced mRNA expression. Four phosphosphingolipids, d16:1, d18:1, d19:1 sphingosine 1-phosphate, and d18:0 sphinganine 1-phosphate, were increased, together with the mRNA expression for their synthetic enzyme SPHK1. Among the most profoundly downregulated plasma lipids were several lysophosphatidylinositols (LPIs) from 3- to 3000-fold. LPIs are required for the synthesis of phosphatidylinositol 4-phosphate (PI4P) pools that are required for HCV replication, and LPIs can also activate the GPR55 receptor. Our plasma lipidomic findings shed new light on the pathobiology of HCV infection and show that a subset of bioactive lipids that may contribute to liver pathology is altered by HCV infection.

Serum lipidome analysis of healthy beagle dogs receiving different diets

Metabolomics 2019 Dec 3;16(1):1.PMID:31797205DOI:10.1007/s11306-019-1621-3.

Introduction: Food and dietary ingredients have significant effects on metabolism and health. Objective: To evaluate whether and how different diets affected the serum lipidomic profile of dogs. Methods: Sixteen healthy beagles were fed a commercial dry diet for 3 months (control diet). After an overnight fasting period, a blood sample was taken for serum lipidomic profile analysis, and each dog was then randomly assigned to one of two groups. Group 1 was fed a commercial diet (Diet 1) and group 2 was fed a self-made, balanced diet supplemented with linseed oil and salmon oil (Diet 2) for 3 months. After an overnight fasting period, a blood sample was taken from each dog. Serum cholesterol and triacylglycerol analyses were performed and the serum lipidomic profiles were analyzed using targeted liquid chromatography-mass spectrometry. Results: Dogs fed the supplemented self-made diet (Diet 2) had significantly higher omega-3 fatty acid-containing lipids species and significantly lower saturated and mono- and di-unsaturated lipid species. Concentrations of sphingosine 1-phosphate species S1P d16:1 and S1P d17:1 were significantly increased after feeding Diet 2. Conclusion: This study found that different diets had significant effects on the dog's serum lipidomic profile. Therefore, in studies that include lipidomic analyses, diet should be included as a confounding factor.