Home>>Peptides>>(S)-3-Amino-4-hydroxybutanoic acid

(S)-3-Amino-4-hydroxybutanoic acid

目录号 : GC67999

(S)-3-Amino-4-hydroxybutanoic acid 是一种丝氨酸衍生物。

(S)-3-Amino-4-hydroxybutanoic acid Chemical Structure

Cas No.:16504-57-7

规格 价格 库存 购买数量
10mg
¥630.00
现货
25mg
¥1,170.00
现货
50mg
¥1,710.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(S)-3-Amino-4-hydroxybutanoic acid is a serine derivative[1].

Amino acids and amino acid derivatives have been commercially used as ergogenic supplements. They influence the secretion of anabolic hormones, supply of fuel during exercise, mental performance during stress related tasks and prevent exercise induced muscle damage. They are recognized to be beneficial as ergogenic dietary substances[1].

[1]. Luckose F, et al. Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr. 2015;55(13):1793-1144.

Chemical Properties

Cas No. 16504-57-7 SDF Download SDF
分子式 C4H9NO3 分子量 119.12
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 8.3949 mL 41.9745 mL 83.949 mL
5 mM 1.679 mL 8.3949 mL 16.7898 mL
10 mM 0.8395 mL 4.1974 mL 8.3949 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Natural Products Containing 'Rare' Organophosphorus Functional Groups

Molecules 2019 Feb 28;24(5):866.PMID:30823503DOI:10.3390/molecules24050866.

Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.

Four mechanisms in the reactions of 3-aminopyrrole with 1,3,5-triazines: inverse electron demand Diels-Alder cycloadditions vs S(N)Ar reactions via uncatalyzed and acid-catalyzed pathways

J Org Chem 2013 Sep 6;78(17):8614-23.PMID:23898949DOI:10.1021/jo4012915.

Reaction of 3-aminopyrrole with seven 1,3,5-triazines was studied in a one-step reaction (in situ formation of 3-aminopyrrole) and a two-step reaction (using the tetraphenylborate salt and an amine base). An inverse-electron demand Diels-Alder reaction (IEDDA) was observed with R1 = CF3, CO2Et, and H with the formation of 5H-pyrrolo[3,2-d]pyrimidine derivatives. S(N)Ar was observed when 2,4,6-trifluoro- or 2,4,6-trichloro-1,3,5-triazine were used--1,3,5-triazines that had leaving groups. If excess 1,3,5-triazine was present the initial S(N)Ar product reacted further, in the presence of acid and water, with another equivalent of 1,3,5-triazine to give compounds containing three linked heterocyclic rings. No reaction was observed with R1 = C6H5 and OCH3. Four mechanisms are proposed to explain the experimental results: uncatalyzed and acid catalyzed inverse electron demand Diels-Alder cascades leading to cycloaddition, and uncatalyzed and acid-catalyzed S(N)Ar reactions leading, respectively, to single and double substitution products. Acid catalysis was a factor when there was reduced reactivity in either reactant.

Boric Acid, a Lewis Acid With Unique and Unusual Properties: Formulation Implications

J Pharm Sci 2020 Aug;109(8):2375-2386.PMID:32353453DOI:10.1016/j.xphs.2020.04.015.

This review provides insight into the use of boric acid as a pharmaceutical, a buffer, and an adjuvant/excipient in pharmaceutical formulations. Boric acid is a Lewis acid with a pKa of 8.92-9.24 that is sensitive to temperature, ionic strength, and concentration. The pKa varies with concentration because of polymerization above 0.02 M. Boric acid reacts reversibly with alcohols, especially 1,2-diols including carbohydrates, with carboxylic acids, thiols, and amines. These esters/adducts, are also Lewis acids with lower pKa values. Boric acid can stabilize some materials while catalyzing the degradation of others. Boric acid is used in various dermal and women'S hygiene products because of its mild antibacterial and antifungal activity. In ophthalmic products, it is used as a buffer and in combination with other preservatives to broaden the prservative spectrum. Boric acid has been used reluctantly in parenteral products but appears to be quite safe at low doses. However, at high exposure, toxicity, including death, has been reported in humans, especially in children. Animal toxicities have also been noted, including reductions in male sperm counts. Boric acid is well absorbed on oral dosing. Its biological half-life is about 21 h in humans and has an affinity for some tissues, especially bone.

Physicochemical and toxicological studies on 4-chloro-3,5-dinitrobenzoic acid in aqueous solutions

Environ Toxicol Chem 2004 May;23(5):1129-35.PMID:15180363DOI:10.1897/03-73.

Physicochemical characterization of hazardous compounds often is required for the development of structure-reactivity correlations. Physical, chemical, and toxicological properties of target pollutants require determination for an efficient application of wastewater treatments. In the present work, we chose a chloro-nitro-aromatic derivative (4-chloro-3,5-dinitrobenzoic acid [CDNBA]), as a model compound on which to perform physicochemical and toxicological studies. Several properties of CDNBA are not available in the literature, although many aromatic nitro-compounds are considered hazardous materials. Measurements of solubility in water, acid dissociation constant, and kinetic parameters for the nucleophilic substitution of chlorine atom in alkaline media are reported. We also performed cytotoxicity studies of CDNBA and ultraviolet-irradiated CDNBA solutions. From the analysis of CDNBA solubility in water at different temperatures, an enthalpy of solution of 23.2 +/- 2.5 kJ/mol was found. The study of the acid dissociation constant Kc by using conductivity measurements and the modified Gran'S method yielded values for the equilibrium constant Ka of 2.36 x 10(-3) and 2.26 x 10(-3), respectively. The bimolecular rate constant for the reaction of CDNB- and hydroxyl ion (HO) measured at room temperature and 0.1 M of ionic strength was 5.92/M x S, and the activation energy for this process was 70.7 +/- 3.4 kJ/mol. Cytotoxicity assays with aqueous suspensions of Tetrahymena pyriformis showed lethal effects due to the pH change induced by CDNBA. On the other hand, in buffered solutions, a value of 104.47 microM was observed for the median effective concentration, that is, the concentration of CDNBA at which the proliferation was restricted to one half of the blank. Irradiation of CDNBA solutions increased the toxicity, suggesting the formation of intermediate products with higher cytotoxicity effects.

The acid tolerance responses of the Salmonella strains isolated from beef processing plants

Food Microbiol 2022 Jun;104:103977.PMID:35287806DOI:10.1016/j.fm.2022.103977.

The development of the stationary-phase, low-pH-inducible acid tolerance response (ATR) in the Salmonella contaminant of beef during the processing arises food safety concerns, because it may evoke bacterial coping mechanisms against bactericidal insults and alter gene expression that contribute to pathogen virulence. However, information on the development of the ATR and the stability (defined as the capacity to maintain the acquired acid tolerance after induction) in the Salmonella during the production and distribution of beef is limited. After adaptation overnight, ATRs in the 79 strains of Salmonella isolated from beef processing plants were investigated by comparing the log reduction in the 2-h acid challenge trials at pH 3.0. Six representative strains were selected to further estimate the effect of three factors in the incubation period on the development of the ATR, including adapted pH values (5.0, 5.4, 6.0, and 7.0), temperatures (10 °C and 37 °C), and the adaptation media (meat extract and brain heart infusion media). The stability of acid tolerance during the long-time chilled storage (4 °C for 13 days) was also observed on two strains of serotypes S. Derby and S. Meleagridis. All the strains isolated from beef processing plants exhibited an enhanced acid tolerance indicating the widespread existence of ATR. The results also revealed that strain variability was present in the development of ATR. Significant tolerance to lethal acidic environments (pH 3.0) was found when the Salmonella strains had been acid-adapted in meat extract at pH 5.0, pH 5.4, or pH 6.0, which indicated the possible induction of ATR during beef production. After the acid adaptations, the population reduction after the acid challenge (BHI, pH = 3) in the strains was significantly lower than the non-induced at the 1d, 7 day and 13 day'S storage in meat extract media at 4 °C, which revealed the persistence of ATR during beef distribution. Compared to 37 °C, adaptation in lower temperature (10 °C) significantly reduced the ATR and no ATR was developed when adapted in 4 °C. This emphasizes the importance of keeping a low temperature of beef throughout the supply chains of beef industry.