(S)-1-(tert-Butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid
目录号 : GC68139(S)-1-(tert-Butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid 是一种脯氨酸衍生物。
Cas No.:103336-06-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
(S)-1-(tert-Butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid is a proline derivative[1].
Amino acids and amino acid derivatives have been commercially used as ergogenic supplements. They influence the secretion of anabolic hormones, supply of fuel during exercise, mental performance during stress related tasks and prevent exercise induced muscle damage. They are recognized to be beneficial as ergogenic dietary substances[1].
[1]. Luckose F, et al. Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr. 2015;55(13):1793-1144.
Cas No. | 103336-06-7 | SDF | Download SDF |
分子式 | C11H19NO4 | 分子量 | 229.27 |
溶解度 | 储存条件 | Store at -20°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 4.3617 mL | 21.8083 mL | 43.6167 mL |
5 mM | 0.8723 mL | 4.3617 mL | 8.7233 mL |
10 mM | 0.4362 mL | 2.1808 mL | 4.3617 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Concise synthesis of (S)-N-BOC-2-hydroxymethylmorpholine and (S)-N-BOC-morpholine-2-carboxylic acid
J Org Chem 2008 May 2;73(9):3662-5.PMID:18363360DOI:10.1021/jo800356q.
An operationally simple synthesis of N-BOC-2-hydroxymethylmorpholine (1) and N-BOC-morpholine-2-carboxylic acid (2) from epichlorohydrin has been developed. No chromatography is required in the processing, which allows high process throughput.
Potential inhibitors of L-asparagine biosynthesis. 5. Electrophilic amide analogues of (S)-2,3-diaminopropionic acid
J Med Chem 1981 May;24(5):554-9.PMID:6787198DOI:10.1021/jm00137a015.
Three electrophilic amide analogues of (S)-2,3-diaminopropionic acid (1, DAP) have been prepared as potential inhibitors of L-asparagine synthetase (ASase, from Novikoff hepatoma, EC 6.3.5.4). DAP was selectively blocked by the carbobenzoxy (Cbz) group to give 3-N-Cbz-DAP (2a). Esterification of 2a with isobutylene afforded tert-butyl 3-N-carbobenzoxy-(S)-2,3-diaminopropionate (3a), which was then blocked at the 2 position with the tert-butoxycarbonyl (Boc) group to give tert-butyl 2-[(S)-(tert-butoxycarbonyl)amino]-3-[(carbobenzoxy)amino]propionate (4). Selective cleavage of the Cbz group by H2/Pd gave the key intermediate tert-butyl 2-N-(tert-butoxycarbonyl)-(S)-2,3-diaminopropionate (5), which was acylated, via the N-hydroxysuccinimide esters, with bromoacetic acid, dichloroacetic acid, and fumaric acid monoethyl ester to give tert-butyl 2-[(S)-(tert-butoxycarbonyl)-amino]-3-(2-bromoacetamido)propionate (6a), tert-butyl 2-[(S)-(tert-butoxycarbonyl)amino]-3-(2,2-dichloroacetamido)propionate (6b), and tert-butyl 2-[(S)-(tert-butoxycarbonyl)amino]-3-(ethoxycarbonyl)acrylamido]-propionate (6c), respectively. Deblocking of 6a-c gave the corresponding amino acids (S)-2-amino-3-(2-bromoacetamido)propionic acid hydrobromide (7a), (S)-2-amino-3-(2,2-dichloroacetamido)propionic acid (7b), and ethyl N-[(S)-2-amino-2-carboxyethyl]fumarate (7c). By a slightly different procedure, 5 was converted in two steps to (S)-2-amino-3-acetamidopropionic acid hydrobromide (7d). The inhibition of ASase by 7a-c at 1 mM was 93, 19, and 37%, respectively, while 7d was without inhibition at 2 mM. Compounds 7a-c failed to increase the life span of mice infected with B16 melanoma.
The development of a new class of inhibitors for betaine-homocysteine S-methyltransferase
Eur J Med Chem 2013 Jul;65:256-75.PMID:23727536DOI:10.1016/j.ejmech.2013.04.039.
Betaine-homocysteine S-methyltransferase (BHMT) is an important zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. In the liver, BHMT performs to half of the homocysteine remethylation. In this study, we systematically investigated the tolerance of the enzyme for modifications at the "homocysteine" part of the previously reported potent inhibitor (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic acid (1). In the new compounds, which are S-alkylated homocysteine derivatives, we replaced the carboxylic group in the "homocysteine" part of inhibitor 1 with different isosteric moieties (tetrazole and oxadiazolone); we suppressed the carboxylic negative charge by amidations; we enhanced acidity by replacing the carboxylate with phosphonic or phosphinic acids; and we introduced pyrrolidine steric constraints. Some of these compounds display high affinity toward human BHMT and may be useful for further pharmacological studies of this enzyme. Although none of the new compounds were more potent inhibitors than the reference inhibitor 1, this study helped to completely define the structural requirements of the active site of BHMT and revealed the remarkable selectivity of the enzyme for homocysteine.
α-L-fucosidase from Paenibacillus thiaminolyticus: its hydrolytic and transglycosylation abilities
Glycobiology 2013 Sep;23(9):1052-65.PMID:23723440DOI:10.1093/glycob/cwt041.
In this work, focused on possible application of α-L-fucosidases from bacterial sources in the synthesis of α-L-fucosylated glycoconjugates, several nonpathogenic aerobic bacterial strains were screened for α-L-fucosidase activity. Among them Paenibacillus thiaminolyticus was confirmed as a potent producer of enzyme with the ability to cleave the chromogenic substrate p-nitrophenyl α-L-fucopyranoside. The gene encoding α-L-fucosidase was found using the genomic library of P. thiaminolyticus constructed in the cells of Escherichia coli DH5α and sequenced (EMBL database: FN869117, carbohydrate-active enzymes database: Glycosidase family 29). The enzyme was expressed in the form of polyhistidine-tagged protein (51.2 kDa) in Escherichia coli BL21 (DE3) cells, purified using nickel-nitrilotriacetic acid agarose affinity chromatography and characterized using the chromogenic substrate p-nitrophenyl α-L-fucopyranoside (K(m) = (0.44 ± 0.02) mmol/L, K(S) = (83 ± 8) mmol/L (substrate inhibition), pH(optimum) = 8.2, t(optimum) = 48°C). By testing the ability of the enzyme to catalyze the transfer of α-L-fucosyl moiety to different types of acceptor molecules, it was confirmed that the enzyme is able to catalyze the formation of α-L-fucosylated p-nitrophenyl glycopyranosides containing α-D-galactopyranosidic, α-D-glucopyranosidic, α-D-mannopyranosidic or α-L-fucopyranosidic moiety. This enzyme is also able to catalyze α-L-fucosylation of aliphatic alcohols of different lenghs of alkyl chain and hydroxyl group positions (methanol, ethanol, 1-propanol, 2-propanol and 1-octanol) and hydroxyl group-containing amino acid derivatives (N-(tert-butoxycarbonyl)-L-serine methyl ester and N-(tert-butoxycarbonyl)-L-threonine methyl ester). These results indicate the possibility of exploiting this enzyme in the synthesis of different types of α-L-fucosylated molecules representing compounds with potential application in biotechnology and the pharmaceutical industry.
L-cysteine, a versatile source of sulfenic acids. Synthesis of enantiopure alliin analogues
J Org Chem 2005 Mar 18;70(6):1986-92.PMID:15760176DOI:10.1021/jo048662k.
[reaction: see text] l-Cysteine is a stimulating starting product for the generation of transient sulfenic acids, such as 4, 6, 9, and 15, which add to suitable acceptors, allowing formation of sulfoxides showing a biologically active residue. These sulfoxides are easily isolated in enantiomerically pure form. For instance, N-(tert-butoxycarbonyl)-l-cysteine methyl ester (1a) furnished in few steps sulfenic acid 9a, which was readily converted into (R,S(S))-(2-tert-butoxycarbonylamino-2-methoxycarbonyl-ethylsulfinyl)ethene (22), the methyl ester of Boc-protected nor-alliin. Moreover, the addition of 9a to 2-methyl-1-buten-3-yne has led to a sulfur epimeric and separable mixture of (R)-2-(2-tert-butoxycarbonylamino-2-methoxycarbonyl-ethylsulfinyl)-3-methyl-buta-1,3-dienes 10a and 11a, still possessing a "masked" sulfenic acid function, producible from their cysteine moieties once the dienes have been converted into the desired derivatives.