Home>>Natural Products>>Rhodamine B (Basic Violet 10)

Rhodamine B (Basic Violet 10) Sale

(Synonyms: 罗丹明B; Basic Violet 10; Brilliant Pink B; Rhodamine O; Tetraethylrhodamine) 目录号 : GC30172

Rhodamine B is used as a tracer dye in water to determine the rate and direction of flow and transport. It is a staining fluorescent dye used in fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA in biotechnology fields.

Rhodamine B (Basic Violet 10) Chemical Structure

Cas No.:81-88-9

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥491.00
现货
100mg
¥446.00
现货
1g
¥714.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Rhodamine B is used as a tracer dye in water to determine the rate and direction of flow and transport. It is a staining fluorescent dye used in fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA in biotechnology fields.

Chemical Properties

Cas No. 81-88-9 SDF
别名 罗丹明B; Basic Violet 10; Brilliant Pink B; Rhodamine O; Tetraethylrhodamine
Canonical SMILES CCN(C1=CC2=[O+]C3=C(C=CC(N(CC)CC)=C3)C(C4=CC=CC=C4C(O)=O)=C2C=C1)CC.[Cl-]
分子式 C28H31ClN2O3 分子量 479.01
溶解度 DMSO : 6 mg/mL (12.53 mM) 储存条件 Store at 4°C, protect from light, stored under nitrogen
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0876 mL 10.4382 mL 20.8764 mL
5 mM 0.4175 mL 2.0876 mL 4.1753 mL
10 mM 0.2088 mL 1.0438 mL 2.0876 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans

Mitochondria undergo dynamic fusion and fission events that affect the structure and function of these critical energy-producing cellular organelles. Defects in these dynamic processes have been implicated in a wide range of human diseases including ischemia, neurodegeneration, metabolic disease, and cancer. To provide new tools for imaging of mitochondria in vivo, we synthesized novel hydrophobic analogues of the red fluorescent dyes rhodamine B and rhodamine 101 that replace the carboxylate with a methyl group. Compared to the parent compounds, methyl analogues termed HRB and HR101 exhibit slightly red-shifted absorbance and emission spectra (5-9 nm), modest reductions in molar extinction coefficent and quantum yield, and enhanced partitioning into octanol compared with aqueous buffer of 10-fold or more. Comparison of living C. elegans (nematode roundworm) animals treated with the classic fluorescent mitochondrial stains rhodamine 123, rhodamine 6G, and rhodamine B, as well as the structurally related fluorophores rhodamine 101, and basic violet 11, revealed that HRB and HR101 are the most potent mitochondrial probes, enabling imaging of mitochondrial motility, fusion, and fission in the germline and other tissues by confocal laser scanning microscopy after treatment for 2 h at concentrations as low as 100 picomolar. Because transgenes are poorly expressed in the germline of these animals, these small molecules represent superior tools for labeling dynamic mitochondria in this tissue compared with the expression of mitochondria-targeted fluorescent proteins. The high bioavailabilty of these novel fluorescent probes may facilitate the identification of agents and factors that affect diverse aspects of mitochondrial biology in vivo.

Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite

The present study reported the synthesis and utilization of a graphene-based hybrid nanocomposite (MnFe2O4/G) to mitigate several synthetic dyes, including methylene blue, malachite green, crystal violet, and Rhodamine B. This adsorbent was structurally analyzed by several physicochemical techniques such as X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption isotherm measurement, point of zero charge, and Boehm titrations. BET surface area of MnFe2O4/G was measured at 382.98 m2/g, which was substantially higher than that of MnFe2O4. MnFe2O4/G possessed diverse surface chemistry properties with the presence of many functional groups such as carboxylic acid, phenolic, lactone, and basic groups. MnFe2O4/G was used to remove synthetic dyes in the aqueous media. The effect of many factors, e.g., concentration (5-50 mg/L), pH (4-10), dose (5-20 mg), and temperature (25-45 °C) on adsorption performance of MnFe2O4/G was conducted. Kinetic, isotherm, intraparticle, and thermodynamic models were adopted for investigating adsorption phenomenon of dyes on MnFe2O4/G. The maximum adsorption capacity of dyes over MnFe2O4/G was found as Rhodamine B (67.8 mg/g) < crystal violet (81.3 mg/g) < methylene blue (137.7 mg/g) < malachite green (394.5 mg/g). Some tests were performed to remove mixed dyes, and mixed dyes in the presence of antibiotics with total efficiencies of 65.8-87.9% after 120 min. Moreover, the major role of π-π stacking interaction was clarified to gain insight into the adsorption mechanism. MnFe2O4/G could recycle up to 4 cycles, which may be beneficial for further practical water treatment.

A comparative study of dye removal using fly ash treated by different methods

The effect of different methods for fly ash treatment using conventional chemical, sonochemical and microwave method on dye adsorption in aqueous solution was investigated. Three basic dyes, methylene blue, crystal violet and rhodamine B, are employed for adsorption testing. It is found that fly ash shows different adsorption capacity depending on type of dyes. Chemical treatment using HCl will increase the adsorption capacity. The adsorption capacity of HCl treated fly ash varies with the preparation conditions. Microwave treatment is a fast and efficient method while producing the sample with the highest adsorption capacity. Solution pH and inorganic salts in dye solution can significantly influence the adsorption. The adsorption data have been analysed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results indicate that the Freundlich and Redlich-Peterson models provide the better correlations with the experimental data.