Home>>Signaling Pathways>> Others>> Others>>2-Acetamidophenol

2-Acetamidophenol Sale

(Synonyms: 邻乙酰氨基酚,Orthocetamol) 目录号 : GC60468

2-Acetamidophenol(Orthocetamol)是Paracetamol(4-acetamidophenol)的邻位区域异构体。2-Acetamidophenol是一种有前途的止痛药和抗关节炎药。

2-Acetamidophenol Chemical Structure

Cas No.:614-80-2

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Paracetamol (4-acetamidophenol). 2-Acetamidophenol is a promising analgesic and an anti-arthritic agent[1].

[1]. Andrusenko I, et al. The Crystal Structure of Orthocetamol Solved by 3D Electron Diffraction. Angew Chem Int Ed Engl. 2019 Aug 5;58(32):10919-10922.

Chemical Properties

Cas No. 614-80-2 SDF
别名 邻乙酰氨基酚,Orthocetamol
Canonical SMILES OC1=C(NC(C)=O)C=CC=C1
分子式 C8H9NO2 分子量 151.16
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.6155 mL 33.0775 mL 66.1551 mL
5 mM 1.3231 mL 6.6155 mL 13.231 mL
10 mM 0.6616 mL 3.3078 mL 6.6155 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

De Novo Biosynthesis and Whole-Cell Catalytic Production of 2-Acetamidophenol in Escherichia coli

J Agric Food Chem 2022 Jan 12;70(1):238-246.PMID:34965133DOI:10.1021/acs.jafc.1c06910.

2-Acetamidophenol (AAP) is an aromatic product with promising activities in agricultural applications and medical research. At present, AAP is synthesized by chemical methods from nonrenewable fossil fuel resources, which cause environmental pollution and the reaction conditions are harsh. In this study, we constructed the artificial biosynthetic pathway of AAP with five different expressed proteins in Escherichia coli for the first time. By introducing the hydrogen peroxide degrading enzyme catalase and improving cell tolerance to toxic intermediates or products, the yield of AAP reached 33.54 mg/L using shaking-flask culture. The best-engineered strain could produce 568.57 mg/L AAP by fed-batch fermentation from glucose and precursor (2-aminophenol, 2-AP) addition. Furthermore, a one-pot whole-cell cascade biocatalytic pathway to AAP and analogues was developed and optimized. This method can efficiently produce 1.8 g/L AAP using the methyl anthranilate hydrolysis product as the substrate. This study provides not only the de novo artificial biosynthetic pathway of AAP in E. coli but also a promising sustainable and efficient strategy to enable the synthesis of AAP on a gram scale.

Identification of new arylamine N-acetyltransferases and enhancing 2-Acetamidophenol production in Pseudomonas chlororaphis HT66

Microb Cell Fact 2020 May 19;19(1):105.PMID:32430011DOI:10.1186/s12934-020-01364-7.

Background: 2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway. Result: In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe3+ to the KB medium, the production of AAP reached 1209.58 mg/L in the engineered strain P3ΔphzBΔlonΔpykAΔrsmE using a shaking-flask culture. This is the highest microbial-based AAP production achieved to date. Conclusion: In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources.

Isolation, identification, and accumulation of 2-Acetamidophenol in liquid cultures of the wheat take-all biocontrol agent Pseudomonas fluorescens 2-79

Appl Microbiol Biotechnol 2000 Sep;54(3):376-81.PMID:11030575DOI:10.1007/s002530000409.

Pseudomonas fluorescens strain 2-79 (NRRL B-15132) is a classic biological control agent known to produce phenazine-l-carboxylic acid (PCA) as its primary means of suppressing take-all disease of wheat. In addition to PCA, an unknown metabolite was discovered in a liquid culture used to produce the biocontrol agent. The objective of the current study was to isolate, identify, and evaluate the accumulation of this compound in production cultures. Upon centrifugal fractionation of a production culture, thin-layer chromatography (TLC) analyses of extracts of the cells and cell-free supernatant indicated the compound to be primarily in the supernatant. Purified compound was obtained by extraction of culture supernatant, followed by flash chromatography of the extract and preparative TLC. The 'H and 13C nuclear magnetic resonance and electron impact mass spectra indicated the compound to be 2-Acetamidophenol (AAP). Measured by reversed-phase HPLC, the accumulations of AAP and PCA in cultures of strain 2-79 reached 0.05 g/l and 1 g/l, respectively. The accumulations of AAP and PCA in liquid cultures were linearly correlated (P < 0.001), as shown by studies of cultures stimulated to yield varying levels of PCA by controlling levels of oxygen transfer, pH, and growth medium composition. In this study, oxygen limitation, a defined amino-acid-free medium, and neutral pH stimulated maximal production of both AAP and PCA. Furthermore, a transposon mutant of 2-79 [2A40 2-79 (phz-)] unable to produce PCA did not accumulate AAP. These findings indicate that AAP and PCA are likely to share a common segment of biosynthetic pathway. This is the first report of AAP production by a strain of P. fluorescens. Possible routes of AAP production are discussed relative to current knowledge of the phenazine biosynthetic pathway of strain 2-79. The pertinence of AAP to the design of commercial seed inoculants of phenazine-producing bacteria for controlling wheat take-all is also considered.

Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium

Can J Microbiol 1993 Jul;39(7):642-8.PMID:8364800DOI:10.1139/m93-093.

An anaerobic consortium that carboxylated and dehydroxylated phenol to benzoate, and 2-cresol to 3-methylbenzoic acid, under methanogenic conditions was studied. Phenol induced this transformation activity. Addition of 4-hydroxypyridine or an increase in the concentration of proteose peptone to 0.5% (w/v) delayed the transformation. Phenol enhanced the rate of transformation of 2-cresol whereas 2-cresol delayed the transformation of phenol. Phenols with ortho-substitutions (chloro-, fluoro-, bromo-, hydroxyl-, amino-, or carboxyl-) were transformed to meta-substituted benzoic acids. However, meta- and para-substituted phenols (cresols, fluorophenols, and chlorophenols) were not transformed. Phenol was most rapidly metabolized, followed by catechol, 2-cresol, 2-fluorophenol, 2-aminophenol, 2-chlorophenol, 2-hydroxybenzoic acid, and 2-bromophenol. The consortium O-demethylated anisole to phenol and 2-methoxyphenol to catechol, and oxidized 2-hydroxybenzyl alcohol to 2-hydroxybenzoic acid. Aniline, 2-ethylphenol, 2-hydroxypyridine, 2-Acetamidophenol, 2,6-dimethylphenol, 2-phenylphenol, and 1-naphthol were not metabolized.

Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides

Appl Environ Microbiol 2003 Jun;69(6):3165-9.PMID:12788712DOI:10.1128/AEM.69.6.3165-3169.2003.

Detoxification of the maize (Zea mays) antimicrobial compound 2-benzoxazolinone by the fungal endophyte Fusarium verticillioides involves two genetic loci, FDB1 and FDB2, and results in the formation of N-(2-hydroxyphenyl)malonamic acid. Intermediate and branch metabolites were previously suggested to be part of the biotransformation pathway. Evidence is presented here in support of 2-aminophenol as the intermediate metabolite and 2-Acetamidophenol as the branch metabolite, which was previously designated as BOA-X. Overall, 2-benzoxazolinone metabolism involves hydrolysis (FDB1) to produce 2-aminophenol, which is then modified (FDB2) by addition of a malonyl group to produce N-(2-hydroxyphenyl)malonamic acid. If the modification is prevented due to genetic mutation (fbd2), then 2-Acetamidophenol may accumulate as a result of addition of an acetyl group to 2-aminophenol. This study resolves the overall chemistry of the 2-benzoxazolinone detoxification pathway, and we hypothesize that biotransformation of the related antimicrobial 6-methoxy-2-benzoxazolinone to produce N-(2-hydroxy-4-methoxyphenyl)malonamic acid also occurs via the same enzymatic modifications. Detoxification of these antimicrobials by F. verticillioides apparently is not a major virulence factor but may enhance the ecological fitness of the fungus during colonization of maize stubble and field debris.