Home>>Peptides>>Rabies Virus Glycoprotein

Rabies Virus Glycoprotein Sale

(Synonyms: 狂犬病病毒糖蛋白) 目录号 : GC34267

RabiesVirusGlycoprotein是由29个氨基酸残基构成的细胞穿透肽,来源于狂犬病病毒糖蛋白,它能够穿过血脑屏障,进入脑细胞。

Rabies Virus Glycoprotein Chemical Structure

规格 价格 库存 购买数量
1mg
¥1,620.00
现货
5mg
¥4,860.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Rabies Virus Glycoprotein is a 29-amino-acid cell penetrating peptide derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells.

RVG peptide is successfully used to carry a variety of cargos into brain cells such as plasmids, siRNAs, proteins, and nanoparticles[1]. RVG29 can govern the interaction of viral particles with at least three known receptors, including neural cell adhesion molecule (NCAM), the p75 neurotrophin receptor (P75NTR), and nicotinic acetylcholine receptors (NAChRs). The RVG29 peptide enhances the brain-specific function of a range of systemically delivered agents, particularly nucleic acids[2].

[1]. Zou Z, et al. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo. Int J Mol Sci. 2016 Dec 14;17(12). pii: E2104. [2]. Cook RL, et al. A critical evaluation of drug delivery from ligand modified nanoparticles: Confounding small molecule distribution and efficacy in the central nervous system. J Control Release. 2015 Dec 28;220(Pt A):89-97.

Chemical Properties

Cas No. SDF
别名 狂犬病病毒糖蛋白
Canonical SMILES Tyr-Thr-Ile-Trp-Met-Pro-Glu-Asn-Pro-Arg-Pro-Gly-Thr-Pro-Cys-Asp-Ile-Phe-Thr-Asn-Ser-Arg-Gly-Lys-Arg-Ala-Ser-Asn-Gly
分子式 C141H217N43O43S2 分子量 3266.7
溶解度 Soluble in Water 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.3061 mL 1.5306 mL 3.0612 mL
5 mM 0.0612 mL 0.3061 mL 0.6122 mL
10 mM 0.0306 mL 0.1531 mL 0.3061 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review

J Drug Target 2017 Jun;25(5):379-385.PMID:27581650DOI:10.1080/1061186X.2016.1223676.

Rabies Virus Glycoprotein (RVG), a 505 amino acid type-1 glycoprotein, is responsible for the neurotrophic nature of the rabies virus infection. Despite varying reports in the literature as to which receptor is ultimately responsible for interaction of RVG with the nervous system, there is a strong argument for major nicotinic acetylcholine receptor (nAChR) involvement. Peptide derivatives of RVG, such as rabies virus-derived peptide (RDP) and RVG-29 are emerging as promising targeting ligands for the delivery of therapeutics to the central nervous system (CNS). The neurotrophic nature of RVG and indeed its derivatives may be due to interaction with ubiquitous nAChRs principally, but also association with other neural cell-specific molecules such as neural cell adhesion molecule (NCAM). It is possible that nAChR-mediated uptake of RVG-derived peptides may serve as an attractive new approach for targeting drug delivery to the brain. Potential application of this type of drug delivery system extends to many diseases affecting the CNS, where specific and effective drug delivery is normally a challenging process.

Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs

ACS Nano 2022 Mar 22;16(3):4014-4027.PMID:35225594DOI:10.1021/acsnano.1c09601.

T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a Rabies Virus Glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.

Rabies Virus Glycoprotein enhances spatial memory via the PDZ binding motif

J Neurovirol 2021 Jun;27(3):434-443.PMID:33788140DOI:10.1007/s13365-021-00972-2.

Rabies is a life-threatening viral infection of the brain. Rabies virus (RABV) merely infects excitable cells including neurons provoking drastic behaviors including negative emotional memories. RABV glycoprotein (RVG) plays a critical role in RABV pathogenesis. RVG interacts with various cytoplasmic PDZ (PSD-95/Dlg/ZO-1) containing proteins through its PDZ binding motif (PBM). PTZ domains have crucial role in formation and function of signal transduction. Hippocampus is one of the cerebral regions that contain high load of viral antigens. We examined impact of RVG expression in the dorsal hippocampus on aversive as well as spatial learning and memory performance in rats. Two microliter of the lentiviral vector (~108 T.U./ml) encoding RVG or ∆RVG (deleted PBM) genomes was microinjected into the hippocampal CA1. After 1 week, rat's brain was cross-sectioned and RVG/∆RVG-expressing neuronal cells were confirmed by fluorescent microscopy. Passive avoidance and spatial learning and memory were assessed in rats by Shuttle box and Morris water maze (MWM). In the shuttle box, both RVG and ∆RVG decreased the time spent in the dark compartment compared to control (p < 0.05). In MWM, RVG and ∆RVG did not affect the acquisition of spatial task. In the probe test, RVG-expressing rats spent more time in the target quadrant, and also reached the platform position sooner than control group (p < 0.05). Rats expressing ∆RVG significantly swam farther from the hidden platform than RVG group (p < 0.05). Our data indicate RVG expression in the hippocampus strengthens aversive and spatial learning and memory performance. The boosting effect on spatial but not avoidance memory is mediated through PBM.

Lentiviral Expression of Rabies Virus Glycoprotein in the Rat Hippocampus Strengthens Synaptic Plasticity

Cell Mol Neurobiol 2022 Jul;42(5):1429-1440.PMID:33462779DOI:10.1007/s10571-020-01032-9.

Rabies virus (RABV) is a neurotropic virus exclusively infecting neurons in the central nervous system. RABV encodes five proteins. Among them, the viral glycoprotein (RVG) plays a key role in viral entry into neurons and rabies pathogenesis. It was shown that the nature of the C-terminus of the RABV G protein, which possesses a PDZ-binding motif (PBM), modulates the virulence of the RABV strain. The neuronal protein partners recruited by this PBM may alter host cell function. This study was conducted to investigate the effect of RVG on synaptic function in the hippocampal dentate gyrus (DG) of rat. Two μl (108 T.U./ml) of the lentiviral vector containing RVG gene was injected into the DG of rat hippocampus. After 2 weeks, the rat's brain was cross-sectioned and RVG-expressing cells were detected by fluorescent microscopy. Hippocampal synaptic activity of the infected rats was then examined by recording the local field potentials from DG after stimulation of the perforant pathway. Short-term synaptic plasticity was also assessed by double pulse stimulation. Expression of RVG in DG increased long-term potentiation population spikes (LTP-PS), whereas no facilitation of LTP-PS was found in neurons expressing δRVG (deleted PBM). Furthermore, RVG and δRVG strengthened paired-pulse facilitation. Heterosynaptic long-term depression (LTD) in the DG was significantly blocked in RVG-expressing group compared to the control group. This blockade was dependent to PBM motif as rats expressing δRVG in the DG-expressed LTD comparable to the RVG group. Our data demonstrate that RVG expression facilitates both short- and long-term synaptic plasticity in the DG indicating that it may involve both pre- and postsynaptic mechanisms to alter synaptic function. Further studies are needed to elucidate the underlying mechanisms.

[Rabies Virus Glycoprotein: structure, immunogenicity and pathogenic role]

Rev Chilena Infectol 2008 Apr;25(2):S14-8.PMID:18425218doi

Rabies glycoprotein is the only exposed protein which is inserted in the viral lipidie envelope. This 65-67 kda protein is a N-glycosilated transmembrane protein forming trimers on the viral surface. It has been identified as the major pathogenicity determinant, playing a role in the budding, viral axonal transport during infection, apoptosis and immune evasion. It is also the major antigen responsible for the protective immune response and it is been used in commercial recombinant vaccines. Its structure, antigenicity and pathogenic role have been well studied, identifying main antigenic sites that have the responsibility for virulence, cellular receptors attachment and epitope acquisition.