Home>>Peptides>>(R)-3-Amino-4-hydroxybutanoic acid

(R)-3-Amino-4-hydroxybutanoic acid

目录号 : GC68107

(R)-3-Amino-4-hydroxybutanoic acid 是一种丝氨酸衍生物。

(R)-3-Amino-4-hydroxybutanoic acid Chemical Structure

Cas No.:16504-56-6

规格 价格 库存 购买数量
250mg
¥342.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(R)-3-Amino-4-hydroxybutanoic acid is a serine derivative[1].

Amino acids and amino acid derivatives have been commercially used as ergogenic supplements. They influence the secretion of anabolic hormones, supply of fuel during exercise, mental performance during stress related tasks and prevent exercise induced muscle damage. They are recognized to be beneficial as ergogenic dietary substances[1].

[1]. Luckose F, et al. Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr. 2015;55(13):1793-1144.

Chemical Properties

Cas No. 16504-56-6 SDF Download SDF
分子式 C4H9NO3 分子量 119.12
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 8.3949 mL 41.9745 mL 83.949 mL
5 mM 1.679 mL 8.3949 mL 16.7898 mL
10 mM 0.8395 mL 4.1974 mL 8.3949 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Towards the biodegradation pathway of fosfomycin

Org Biomol Chem 2017 Apr 11;15(15):3276-3285.PMID:28352915DOI:10.1039/c7ob00546f.

Three functionalised propylphosphonic acids were synthesised to study C-P bond cleavage in R. huakuii PMY1. (R)-1-Hydroxy-2-oxopropylphosphonic acid [(R)-5] was prepared by chiral resolution of (±)-dimethyl 1-hydroxy-2-methylallyllphosphonate [(±)-12], followed by ozonolysis and deprotection. The N-(l-alanyl)-substituted (1R,2R)-2-amino-1-hydroxypropylphosphonic acid 10, a potential precursor for 2-oxopropylphosphonic acid (5) in cells, was obtained by coupling the aminophosphonic acid with benzotriazole-activated Z-l-alanine and hydrogenolytic deprotection. (1R*,2R*)-1,2-Dihydroxy-3,3,3-trifluoropropylphosphonic acid, a potential inhibitor of C-P bond cleavage after conversion into its 2-oxo derivative in the cell, was accessed from trifluoroacetaldehyde hydrate via hydroxypropanenitrile 21, which was silylated and reduced to the aldehyde (±)-23. Diastereoselective addition of diethyl trimethylsilyl phosphite furnished diastereomeric α-siloxyphosphonates. The less polar one was converted to the desired racemic phosphonic acid (±)-(1R*,2R*)-9 as its ammonium salt.

Enantioseparation of 3-Hydroxycarboxylic Acids via Diastereomeric Salt Formation by 2-Amino-1,2-diphenylethanol (ADPE) and Cinchonidine

Molecules 2022 Dec 23;28(1):114.PMID:36615310DOI:10.3390/molecules28010114.

Enantioseparation of 3-hydroxycarboxylic acids via diastereomeric salt formation was demonstrated using 2-amino-1,2-diphenylethanol (ADPE) and cinchonidine as the resolving agents. Racemic 3-hydroxy-4-phenylbutanoic acid (rac-1), 3-hydroxy-4-(4-chlorophenyl)butanoic acid (rac-2), and 3-hydroxy-5-phenylpentanoic acid (rac-3) were efficiently resolved using these resolving agents. Moreover, the successive crystallization of the less-soluble diastereomeric salt of 1 and cinchonidine using EtOH yielded pure (R)-1 · cinchonidine salt in a high yield. The crystal structures of less-soluble diastereomeric salts were elucidated and it was revealed that hydrogen bonding and CH/π interactions play an important role in reinforcing the structure of the less-soluble diastereomeric salts.

Structure of 4-carboxy-2-nitrobenzeneboronic acid

Acta Crystallogr C 1993 Apr 15;49 ( Pt 4):690-3.PMID:8494629DOI:10.1107/s0108270192010916.

4-(Dihydroxyboryl)-3-nitrobenzoic acid, C7H6BNO6, M(R) = 210.94, monoclinic, P2(1)/n, a = 10.542 (2), b = 6.411 (1), c = 13.105 (4) A, beta = 106.47 (2) degrees, V = 849.3 (4) A3, Z = 4, Dm = 1.65 (flotation in CCl4/1,2-dibromoethane), Dx = 1.649 Mg m-3, lambda(Mo K alpha) = 0.71073 A, mu = 0.135 mm-1, F(000) = 432, T = 293 K, R = 0.0530 for 1328 observed reflections with F > 2 sigma(F). The molecule is flat [the carboxy and nitro groups are rotated 5.8 (4) and 1.9 (4) degrees, respectively, out of the plane] with the boronic acid group almost normal to the plane of the benzene ring, 92.4 (3) degrees. The B atom and one O atom of the nitro group are separated by only 2.457 (4) A implying an interaction that is consistent with observed chemical behavior.

Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view

OMICS 2010 Oct;14(5):525-40.PMID:20955006DOI:10.1089/omi.2010.0072.

Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.

Dietary Acid Load Associated with Hypertension and Diabetes in the Elderly

Curr Aging Sci 2022 Aug 4;15(3):242-251.PMID:35346013DOI:10.2174/1874609815666220328123744.

Background: Diet can affect the body's acid-base balance due to its content of acid or base precursors. There is conflicting evidence for the role of metabolic acidosis in the development of cardiometabolic disorders, hypertension (HT), and insulin resistance (IR). Objective: We hypothesized that dietary acid load (DAL) is associated with adverse metabolic risk factors and aimed to investigate this in the elderly. Methods: A total of 114 elderly participants were included in the study. The participants were divided into four groups, such as HT, diabetes (DM), both HT and DM, and healthy controls. Anthropometric, biochemical, and clinical findings were recorded. Potential renal acid load (PRAL) and net endogenous acid production (NEAP) results were obtained for three days, 24-hour dietary records via a nutrient database program (BeBiS software program). Results: The groups were matched for age, gender, and BMI. There was a statistically significant difference between the groups regarding NEAP (p =0.01) and no significant difference for PRAL ( p = 0.086). The lowest NEAP and PRAL levels were seen in the control group while the highest in the HT group. Both NEAP and PRAL were correlated with waist circumference (R = 0,325, p = 0.001; R=0,231, p =0,016, respectively). Conclusion: Our data confirmed that subjects with HT and DM had diets with greater acid-forming potential. High NEAP may be a risk factor for chronic metabolic diseases, particularly HT. PRAL could not be shown as a significantly different marker in all participants. Dietary content has a significant contribution to the reduction of cardiovascular risk factors, such as HT, DM, and obesity.