PNU-101603
目录号 : GC67953PNU-101603 是 Sutezolid 的亚砜代谢物。PNU-101603 单独使用或与 SQ109 联用均展现了出色的抗分枝杆菌 (MTB) 活性, 以及抗药敏和耐多药结核病活性。
Cas No.:168828-60-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
PNU-101603 is a sulfoxide metabolite of Sutezolid . PNU-101603 alone or combined with SQ109 shows excellent activity against Mycobacterium tuberculosis (MTB), as well as against drug-susceptible and multidrug-resistant TB[1][2].
PNU-101603 (compound 7, 21 days) inhibits M. tuberculosis activity[2].
Cell Viability Assay[2]
Cell Line: | M. tuberculosis |
Concentration: | 0-1 μg/mL approximately |
Incubation Time: | 21 days |
Result: | Inhibited M. tuberculosis with a MIC value ≤0.125 μg/mL. |
[1]. Reddy VM, et al. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J Antimicrob Chemother. 2012 May;67(5):1163-6.
[2]. Barbachyn MR, et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem. 1996 Feb 2;39(3):680-5.
Cas No. | 168828-60-2 | SDF | Download SDF |
分子式 | C16H20FN3O4S | 分子量 | 369.41 |
溶解度 | DMSO : 100 mg/mL (270.70 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.707 mL | 13.5351 mL | 27.0702 mL |
5 mM | 0.5414 mL | 2.707 mL | 5.414 mL |
10 mM | 0.2707 mL | 1.3535 mL | 2.707 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro
J Antimicrob Chemother 2012 May;67(5):1163-6.PMID:22258923DOI:10.1093/jac/dkr589.
Objectives: To investigate in vitro interaction between two compounds, SQ109 and PNU-100480, currently in development for the treatment of Mycobacterium tuberculosis (MTB). Methods: The two-drug interactions between SQ109 and PNU-100480 and its major metabolite PNU-101603 were assessed by chequerboard titration, and the rate of killing and intracellular activity were determined in both J774A.1 mouse macrophages and whole blood culture. Results: In chequerboard titration, interactions between SQ109 and either oxazolidinone were additive. In time-kill studies, SQ109 killed MTB faster than PNU compounds, and its rate of killing was further enhanced by both oxazolidinones. The order of efficacy of single compounds against intracellular MTB was SQ109 > PNU-100480 > PNU-101603. At sub-MIC, combinations of SQ109 + PNU compounds showed improved intracellular activity over individual drugs; at ≥MIC, the order of efficacy was SQ109 > SQ109 + PNU-100480 > SQ109 + PNU-101603. In whole blood culture, the combined bactericidal activities of SQ109 and PNU-100480 and its major metabolite against intracellular M. tuberculosis did not differ significantly from the sum of the compounds tested individually. Conclusions: SQ109 and PNU combinations were additive and improved the rate of MTB killing over individual drugs. These data suggest that the drugs may work together cooperatively to eliminate MTB in vivo.
Single Ascending-Dose Study To Evaluate the Safety, Tolerability, and Pharmacokinetics of Sutezolid in Healthy Adult Subjects
Antimicrob Agents Chemother 2022 Apr 19;66(4):e0210821.PMID:35285241DOI:10.1128/aac.02108-21.
The primary objective of the study was to evaluate the safety and tolerability of single oral doses of sutezolid tablets administered under fasting conditions in healthy adult subjects. The secondary objective was to determine the pharmacokinetics (PK) of sutezolid and two metabolites, PNU-101603 and PNU-101244. Overall, sutezolid was well tolerated when administered as a 300-mg, 600-mg, 1,200-mg, or 1,800-mg dose in healthy adult subjects under fasting conditions. Maximum concentration (Cmax) of sutezolid, PNU-101603, and PNU-101244 increased in a less-than-proportional manner with an increase in sutezolid dose between 300 mg and 1,800 mg. Total exposure (AUClast [area under the concentration-time curve from time zero to the time of the last quantifiable concentration] and AUCinf [area under the plasma concentration time curve from time zero extrapolated to infinity]) of sutezolid, PNU-101603, and PNU-101244 increased proportionally with an increase in sutezolid dose.
Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers
J Infect Dis 2010 Sep 1;202(5):745-51.PMID:20629533DOI:10.1086/655471.
Background: The oxazolidinone PNU-100480 is superior to linezolid against experimental murine tuberculosis. Two metabolites contribute to but do not fully account for its superiority. This study examined the safety, tolerability, pharmacokinetics, and mycobactericidal activity of single ascending doses of PNU-100480. Methods: Nineteen healthy volunteers received 2 escalating single oral doses (35-1500 mg) of PNU-100480 or placebo. Eight subjects received 4 daily doses of 300 mg of linezolid. Drug concentrations and bactericidal activity against Mycobacterium tuberculosis in whole-blood bactericidal culture were measured. Results: All doses were safe and well tolerated. PNU-100480 doses to 1000 mg were well absorbed and showed approximately proportional increases in exposures of parent and metabolites. The geometric mean maximal concentrations of PNU-100480, PNU-101603, and PNU-101244 (sulfoxide and sulfone metabolites) at 1000 mg were 839, 3558, and 54 ng/mL, respectively. The maximal whole-blood bactericidal activity (-0.37 +/- .06 log/day) occurred at combined PNU levels > or =2 times the minimum inhibitory concentration. The observed geometric mean maximal concentration for linezolid was 6425 ng/mL. Its maximal whole-blood bactericidal activity also occurred at > or =2 times the minimum inhibitory concentration, but it was only -0.16 +/- .05 log/day (P< .001) Neither drug showed enhanced activity at higher concentrations. Conclusions: Single doses of PNU-100480 to 1000 mg were well tolerated and exhibited antimycobacterial activity superior to 300 mg of linezolid at steady state. Additional studies are warranted to define its role in drug-resistant tuberculosis.
Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis
Antimicrob Agents Chemother 2014 Jun;58(6):3306-11.PMID:24687496DOI:10.1128/AAC.01920-13.
Sutezolid (PNU-100480 [U-480]) is an oxazolidinone antimicrobial being developed for the treatment of tuberculosis. An active sulfoxide metabolite (PNU-101603 [U-603]), which reaches concentrations in plasma several times those of the parent, has been reported to drive the killing of extracellular Mycobacterium tuberculosis by sutezolid in hollow-fiber culture. However, the relative contributions of the parent and metabolite against intracellular M. tuberculosis in vivo are not fully understood. The relationships between the plasma concentrations of U-480 and U-603 and intracellular whole-blood bactericidal activity (WBA) in ex vivo cultures were examined using a direct competitive population pharmacokinetic (PK)/pharmacodynamic 4-parameter sigmoid model. The data set included 690 PK determinations and 345 WBA determinations from 50 tuberculosis patients enrolled in a phase 2a sutezolid trial. The model parameters were solved iteratively. The median U-603/U-480 concentration ratio was 7.1 (range, 1 to 28). The apparent 50% inhibitory concentration of U-603 for intracellular M. tuberculosis was 17-fold greater than that of U-480 (90% confidence interval [CI], 9.9- to 53-fold). Model parameters were used to simulate in vivo activity after oral dosing with sutezolid at 600 mg twice a day (BID) and 1,200 mg once a day (QD). Divided dosing resulted in greater cumulative activity (-0.269 log10 per day; 90% CI, -0.237 to -0.293 log10 per day) than single daily dosing (-0.186 log10 per day; 90% CI, -0.160 to -0.208 log10 per day). U-480 accounted for 84% and 78% of the activity for BID and QD dosing, respectively, despite the higher concentrations of U-603. Killing of intracellular M. tuberculosis by orally administered sutezolid is mainly due to the activity of the parent compound. Taken together with the findings of other studies in the hollow-fiber model, these findings suggest that sutezolid and its metabolite act on different mycobacterial subpopulations.