Home>>Peptides>>PGLa

PGLa Sale

目录号 : GC32319

PGLa是一种抗菌肽,对革兰氏阳性菌和阴性菌均具有抑菌作用。

PGLa Chemical Structure

Cas No.:102068-15-5

规格 价格 库存 购买数量
500μg
¥1,696.00
现货
1mg
¥3,035.00
现货
5mg
¥9,818.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PGLa is an antimicrobial peptide. PGLa is known to be bacteriostatic against both Gram-positive and Gram-negative bacteria.

PGLa is known to be bacteriostatic against both Gram-positive and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, and Staphylococcus aureus), without much selectivity between the two types of bacterial cells. PGLa is synthesized as a native (the wild type) peptide and as a mutant with a norleucine instead of methionine at position 2Met (designated PGLa(Nle)).

[1]. Radchenko DS, et al. Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions? Biochim Biophys Acta. 2016 Sep;1858(9):2019-27.

Chemical Properties

Cas No. 102068-15-5 SDF
Canonical SMILES Gly-Met-Ala-Ser-Lys-Ala-Gly-Ala-Ile-Ala-Gly-Lys-Ile-Ala-Lys-Val-Ala-Leu-Lys-Ala-Leu-NH2
分子式 C88H162N26O22S 分子量 1968.45
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.508 mL 2.5401 mL 5.0801 mL
5 mM 0.1016 mL 0.508 mL 1.016 mL
10 mM 0.0508 mL 0.254 mL 0.508 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Mechanisms of Binding of Antimicrobial Peptide PGLa to DMPC/DMPG Membrane

J Chem Inf Model 2022 Mar 28;62(6):1525-1537.PMID:35266698DOI:10.1021/acs.jcim.1c01518.

PGLa belongs to a class of antimicrobial peptides showing strong affinity to anionic bacterial membranes. Using all-atom explicit solvent replica exchange molecular dynamics with solute tempering, we studied binding of PGLa to a model anionic dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayer. Due to a strong hydrophobic moment, PGLa upon binding adopts a helical structure and two distinct bound states separated by a significant free energy barrier. In these states, the C-terminus helix is either surface bound or inserted into the bilayer, whereas the N-terminus remains anchored in the bilayer. Analysis of the free energy landscape indicates that the transition between the two states involves a C-terminus helix rotation permitting the peptide to preserve the interactions between cationic Lys amino acids and anionic lipid phosphorus groups. We calculated the free energy of PGLa binding and showed that it is mostly governed by the balance between desolvation of PGLa positive charges and formation of electrostatic PGLa-lipid interactions. PGLa binding induces minor bilayer thinning but causes pronounced lipid redistribution resulting from an influx of DMPG lipids into the binding footprint and efflux of DMPC lipids. Our in silico results rationalize the S-state detected in NMR experiments.

Individual Roles of Peptides PGLa and Magainin 2 in Synergistic Membrane Poration

Langmuir 2020 Jul 7;36(26):7190-7199.PMID:32529830DOI:10.1021/acs.langmuir.0c00194.

Synergy between antimicrobial peptides PGLa and Magainin 2 (MAG2) provides an efficient way to enhance their antimicrobial ability. However, the underlying molecular mechanism of such synergy, especially the individual roles of each peptide, remains poorly understood. We combined a giant unilamellar vesicle leakage assay, in situ interfacial photovoltage testing, and molecular dynamics to investigate membrane poration under the action of PGLa, MAG2, or a PGLa/MAG2 mixture. Our results clearly show the different membrane action modes of the three systems and demonstrate the importance of forming PGLa-MAG2 heterodimers in the membrane poration process. PGLa inserted into and extracted from a membrane rapidly and continually with minimal aggregation and produced only transient, small pores. In contrast, MAG2 peptides tended to aggregate together on the membrane surface or only shallowly embed in the membrane. Additionally, the PGLa and MAG2 residues were well integrated into the membrane via the formation of PGLa-MAG2 heterodimers. The membrane defect produced by the rapid insertion of PGLa was stabilized by MAG2, which further recruited other peptides for the formation of PGLa-MAG2 heterodimers and even heterodimer clusters. Growth in pore size then occurred in a step-by-step process involving the formation and assembly of heterodimer clusters within the membrane. Our results provide insight into the complicated synergy that occurs between PGLa and MAG2 during membrane poration and will assist in the design of new antimicrobial peptides.

Biological activity and structural aspects of PGLa interaction with membrane mimetic systems

Biochim Biophys Acta 2009 Aug;1788(8):1656-66.PMID:19481533DOI:10.1016/j.bbamem.2009.05.012.

Peptidyl-glycine-leucine-carboxyamide (PGLa), isolated from granular skin glands of Xenopus laevis, is practically devoid of secondary structure in aqueous solution and in the presence of zwitterionic phospholipids, when added exogenously, but adopts an alpha-helix in the presence of anionic lipids. The peptide was shown to exhibit antifungal activity and to have antimicrobial activity towards both Gram-negative and Gram-positive bacteria. As a broad variety of peptides is found in the secretions of amphibian skin combinatorial treatment of PGLa and magainin 2 was studied showing enhanced activity by a heterodimer formation. Thus production of mutually recognizing peptides seems to be an effective way in nature to increase selective membrane activity. Biophysical studies on membrane mimics demonstrated that PGLa can discriminate between different lipid species, preferentially interacting with negatively charged lipids, which are major components of bacterial but not mammalian cell membranes. This emphasizes the role of electrostatic interactions as a major determinant to trigger the affinity of antimicrobial peptides towards bacterial membranes. PGLa induced the formation of a quasi-interdigitated phase in phosphatidylglycerol bilayers below their chain melting transition, which is due to the creation of voids below the peptide being aligned parallel to the membrane surface. In the fluid phase of phosphatidylglycerol the peptide inserts perpendicularly into the bilayer above a threshold concentration, which results in a hydrophobic mismatch of the peptide length and bilayer core for lipids< or =C16. This mismatch is compensated by stretching of the acyl chains and in turn thickening of the bilayer demonstrating that membrane thinning cannot be taken generally as the hallmark of pore formation by antimicrobial peptides. Furthermore, PGLa was shown to affect membrane curvature strain of phosphatidylethanolamine, another main lipid component of bacterial membranes, where a cubic phase coexists with the fluid bilayer phase. Investigations on living Escherichia coli showed distinct changes in cell envelope morphology, when treated with the peptide. In a first stage loss of surface stiffness and consequently of topographic features was observed, followed in a second stage by permeabilization of the outer membrane and rupture of the inner (cytoplasmic) membrane supposedly by the mechanism(s) derived from model studies.

Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR

Biochim Biophys Acta 2009 Aug;1788(8):1667-79.PMID:19272296DOI:10.1016/j.bbamem.2008.12.018.

The skin secretions of amphibians are a rich source of antimicrobial peptides. The two antimicrobial peptides PGLa and magainin 2, isolated from the African frog Xenopus laevis, have been shown to act synergistically by permeabilizing the membranes of microorganisms. In this report, the literature on PGLa is extensively reviewed, with special focus on its synergistically enhanced activity in the presence of magainin 2. Our recent solid state (2)H NMR studies of the orientation of PGLa in lipid membranes alone and in the presence of magainin 2 are described in detail, and some new data from 3,3,3-(2)H(3)-L-alanine labeled PGLa are included in the analysis.

Elementary processes of antimicrobial peptide PGLa-induced pore formation in lipid bilayers

Biochim Biophys Acta Biomembr 2018 Nov;1860(11):2262-2271.PMID:30409522DOI:10.1016/j.bbamem.2018.08.018.

Antimicrobial peptide PGLa induces the leakage of intracellular content, leading to its bactericidal activity. However, the elementary process of PGLa-induced leakage remains poorly understood. Here, we examined the interaction of PGLa with lipid bilayers using the single giant unilamellar vesicle (GUV) method. We found that PGLa induced membrane permeation of calcein from GUVs comprised of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) and its rate increased with time to reach a steady value, indicating that PGLa induced pores in the bilayer. The binding of PGLa to the GUV membrane raised its fractional area change, 未. At high PGLa concentrations, the time course of 未 showed a two-step increase; 未 increased to a value, 未1, which was constant for an extended period before increasing to another constant value, 未2, that persisted until aspiration of the GUV. To reveal the distribution of PGLa, we investigated the interaction of a mixture of PGLa and carboxyfluorescein (CF) -labeled PGLa (CF-PGLa) with single GUVs. The change of the fluorescence intensity of the GUV rim, I, over time showed a two-step increase from a steady value, I1, to another, I2, concomitant with the entering of CF-PGLa into the lumen of the GUV prior to AF647 leakage. The simultaneous measurement of 未 and I indicated that their time courses were virtually the same and the ratios (未2/未1 and I2/I1) were almost 2. These results indicated that CF-PGLa translocated across the bilayer before membrane permeation. Based on these results, the elementary processes of the PGLa-induced pore formation were discussed.