Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>neo-Inositol

neo-Inositol Sale

目录号 : GC63102

neo-Inositol 是肌醇的一个立体异构体,可从牛脑中分离得到。

neo-Inositol Chemical Structure

Cas No.:488-54-0

规格 价格 库存 购买数量
1 mg
¥3,510.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

neo-Inositol, a stereoisomer of inositol, has been isolated from calf brain[1].

[1]. W R Sherman, et al. Neo-Inositol in Mammalian Tissues. Identification, Measurement, and Enzymatic Synthesis From Mannose 6-phosphate. Biochemistry. 1971 Sep 14;10(19):3491-9.

Chemical Properties

Cas No. 488-54-0 SDF
分子式 C6H12O6 分子量 180.16
溶解度 储存条件
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.5506 mL 27.7531 mL 55.5062 mL
5 mM 1.1101 mL 5.5506 mL 11.1012 mL
10 mM 0.5551 mL 2.7753 mL 5.5506 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

neo-Inositol polyphosphates in the amoeba Entamoeba histolytica

J Biol Chem 2000 Apr 7;275(14):10134-40.PMID:10744695DOI:10.1074/jbc.275.14.10134.

We have reexamined the structure of inositol phosphates present in trophozoites of the parasitic amoeba Entamoeba histolytica and show here that, rather than being myo-inositol derivatives (Martin, J.-B., Bakker-Grunwald, T., and Klein, G. (1993) Eur. J. Biochem. 214, 711-718), these compounds belong to a new class of inositol phosphates in which the cyclitol isomer is neo-Inositol. The structures of neo-Inositol hexakisphosphate, 2-diphospho-neo-inositol pentakisphosphate, and 2, 5-bisdiphospho-neo-inositol tetrakisphosphate, which are present in E. histolytica at concentrations of 0.08-0.36 mM, were solved by two-dimensional (31)P-(1)H NMR spectroscopy. No evidence for the co-existence of their myo-inositol counterparts has been found. These neo-Inositol compounds were not substrates of 6-diphospho-inositol pentakisphosphate 5-kinase, an enzyme purified from Dictyostelium discoideum that phosphorylates 6-diphospho-myo-inositol pentakisphosphate and more slowly also myo-inositol hexakisphosphate, specifically on position 5. Because preliminary data indicate that large amounts of the same neo-Inositol phosphate and diphosphate esters are also present in another primitive amoeba, Phreatamoeba balamuthi, the occurrence of high concentrations of neo-Inositol polyphosphates may be much more general than previously thought.

Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations

Plant Soil 2018 Jun;427(1-2):149-161.PMID:29880988DOI:10.1007/s11104-017-3315-9.

Background and aims: In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates. Methods: We employed the enzyme inositol pentakisphosphate 2-kinase, IP5 2-K, to transfer phosphate from [γ-32P]ATP to axial hydroxyl(s) of myo-, neo- and 1D-chiro-inositol phosphate substrates. Results: 32P-labeled inositol phosphates were separated by anion exchange HPLC with phosphate eluents. Additional HPLC methods were developed to allow facile separation of myo-, neo-, 1D-chiro- and scyllo-inositol hexakisphosphate on acid gradients. Conclusions: We developed enzymic approaches that allow the synthesis of labeled myo-inositol 1,[32P]2,3,4,5,6-hexakisphosphate; neo-Inositol 1,[32P]2,3,4,[32P]5,6 - hexakisphosphate and 1D-chiro-inositol [32P]1,2,3,4,5,[32P]6-hexakisphosphate. Additionally, we describe HPLC separations of all inositol hexakisphosphates yet identified in soils, using a collection of soil inositol phosphates described in the seminal historic studies of Cosgrove, Tate and coworkers. Our study will enable others to perform radiotracer experiments to analyze fluxes of phosphate to/from inositol hexakisphosphates in different soils.

Stereo- and regiospecificity of yeast phytases-chemical synthesis and enzymatic conversion of the substrate analogues neo- and L-chiro-inositol hexakisphosphate

Bioorg Chem 2003 Feb;31(1):44-67.PMID:12697168DOI:10.1016/s0045-2068(02)00523-0.

Phytases are enzymes that catalyze the hydrolysis of phosphate esters in myo-inositol hexakisphosphate (phytic acid). The precise routes of enzymatic dephosphorylation by phytases of the yeast strains Saccharomyces cerevisiae and Pichia rhodanensis have been investigated up to the myo-inositol trisphosphate level, including the absolute configuration of the intermediates. Stereoselective assignment of the myo-inositol pentakisphosphates (D-myo-inositol 1,2,4,5,6-pentakisphosphate and D-myo-inositol 1,2,3,4,5-pentakisphosphate) generated was accomplished by a new method based on enantiospecific enzymatic conversion and HPLC analysis. Via conduritol B or E derivatives the total syntheses of two epimers of myo-inositol hexakisphosphate, neo-Inositol hexakisphosphate and L-chiro-inositol hexakisphosphate were performed to examine the specificity of the yeast phytases with these substrate analogues. A comparison of kinetic data and the degradation pathways determined gave the first hints about the molecular recognition of inositol hexakisphosphates by the enzymes. Exploitation of the high stereo- and regiospecificity observed in the dephosphorylation of neo- and L-chiro-inositol hexakisphosphate made it possible to establish enzyme-assisted steps for the synthesis of D-neo-inositol 1,2,5,6-tetrakisphosphate, L-chiro-inositol 1,2,3,5,6-pentakisphosphate and L-chiro-inositol 1,2,3,6-tetrakisphosphate.

A short, stereoselective synthesis of neo-Inositol

Carbohydr Res 2000 Feb 25;324(3):200-3.PMID:10724534DOI:10.1016/s0008-6215(99)00289-x.

A practical synthesis of neo-Inositol is described in which the target is prepared on a multigram scale in six operations from bromobenzene.

A molecular dynamics simulation of the melting points and glass transition temperatures of myo- and neo-Inositol

J Chem Phys 2004 Nov 15;121(19):9565-73.PMID:15538878DOI:10.1063/1.1806792.

The heat of sublimation, density, melting point, and glass transition temperature are calculated for myo- and neo-Inositol, using the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field and molecular dynamics techniques. Our results show that the calculated heats of sublimation and density are very close to the experimental values for both compounds. Furthermore, our simulated melting temperatures for myo- and neo-Inositol also compare very well to the experimentally obtained data. The glass transition temperatures for myo- and neo-Inositol have been calculated to be ca. 494 K and ca. 518 K, respectively, and the shape of the volume versus temperature plots produced are typical for a glass transition. As a result, it is our view that the COMPASS force field suitably describes these two compounds in molecular simulations and that molecular dynamics techniques, combined with this force field, can be used to simulate the melt and glass transitions for such molecules.