Home>>Peptides>>MUC5AC motif peptide

MUC5AC motif peptide Sale

(Synonyms: MUC5AC基序肽) 目录号 : GC34269

MUC5ACmotifpeptide是粘蛋白5(mucin5)的16个氨基酸片段。

MUC5AC motif peptide Chemical Structure

规格 价格 库存 购买数量
1mg
¥1,071.00
现货
5mg
¥4,284.00
现货
10mg
¥7,229.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

MUC5AC motif peptide is a 16-amino acid fragment of mucin 5.

The MUC5AC mucin motif peptide (GTTPSPVPTTSTTSAP) is a single-letter amino acid codes. The peptide GTTPSPVPTTSTTSAP, mimicking the human mucin tandem repeat of MUC5AC, has been thought to be of value because of the existence of four identical repeats within the sequence of the clone JER58 (GTTPSAVPTTSTTSVPand GTTPSPVPTTSITSVP)[1].

[1]. Tetaert D, et al. Glycopeptide N-acetylgalactosaminyltransferase specificities for O-glycosylated sites onMUC5AC mucin motif peptides. Biochem J. 2001 Jul 1;357(Pt 1):313-20.

Chemical Properties

Cas No. SDF
别名 MUC5AC基序肽
Canonical SMILES Gly-Thr-Thr-Pro-Ser-Pro-Val-Pro-Thr-Thr-Ser-Thr-Thr-Ser-Ala-Pro
分子式 C63H104N16O26 分子量 1501.62
溶解度 Soluble in Water 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.6659 mL 3.3297 mL 6.6595 mL
5 mM 0.1332 mL 0.6659 mL 1.3319 mL
10 mM 0.0666 mL 0.333 mL 0.6659 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis

Proper lung function relies on the precise balance of specialized epithelial cells that coordinate to maintain homeostasis. Herein, we describe essential roles for the transcriptional regulators YAP/TAZ in maintaining lung epithelial homeostasis, reporting that conditional deletion of Yap and Wwtr1/Taz in the lung epithelium of adult mice results in severe defects, including alveolar disorganization and the development of airway mucin hypersecretion. Through in vivo lineage tracing and in vitro molecular experiments, we reveal that reduced YAP/TAZ activity promotes intrinsic goblet transdifferentiation of secretory airway epithelial cells. Global gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggest that YAP/TAZ act cooperatively with TEA domain (TEAD) transcription factors and the NuRD complex to suppress the goblet cell fate program, directly repressing the SPDEF gene. Collectively, our study identifies YAP/TAZ as critical factors in lung epithelial homeostasis and offers molecular insight into the mechanisms promoting goblet cell differentiation, which is a hallmark of many lung diseases.

Polypeptide:N-acetylgalactosaminyltransferase activities towards the mucin MUC5AC peptide motif using microsomal preparations of normal and tumoral digestive mucosa

The selected-acceptor substrate peptide (TTSAPTTS), deduced from the human mucin gene MUC5AC (expressed essentially in the human gastric and tracheobronchial mucosa), was used to assay polypeptide:N-acetylgalactosaminyltransferases (GalNAc transferases) of different microsomal preparations, obtained from gastric and colonic mucosa in normal and tumoral situations. The O-glycosylated products, analyzed by capillary electrophoresis and electrospray mass spectrometry, showed a variable number of GalNAc O-linked to the different hydroxy amino acids of TTSAPTTS, depending on the tissue studied. Our observations were consistent with the existence of more than one form of GalNAc transferases which were expressed differentially in the gastrointestinal tract (stomach and/or colon). The levels of enzyme activities showed a tissue-specific pattern as they were high in normal colonic tissue and low in colon cancer. On the other hand, in the tumoral gastric tissue (displaying intestinal metaplasia) a high level of GalNAc transferase activities was obtained, similar to that found in the normal colon. Moreover, slight discrepancies (activities and number of O-linked GalNAc) were only detected between normal gastric and tumoral colonic preparations. Thus, the data indicated that the dedifferentiation of the gastric cancer tissue may induce GalNAc transferase activities similar to those in the normal colonic, tissue and that colonic and gastric tissues may contain families of glycosyltransferases involved specifically in reaction towards particular peptide or protein substrates. In addition, the analysis by capillary electrophoresis and electrospray mass spectrometry revealed, in tumoral gastric as well as in normal colonic tissues, a high dipeptidylaminotransferase activity inducing an elongation of TTSAPTTS by dithreonine. This activity was low in normal gastric and tumoral colonic tissues.

Influence of the amino acid sequence on the MUC5AC motif peptide O-glycosylation by human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s)

The present work was carried out to study the role of the peptide moiety in the addition of O-linked N-acetylgalactosamineto human apomucin using human crude microsomal homogenates from gastric mucosa (as enzyme source) and a series of peptide acceptors representative of tandem repeat domains deduced from the MUC5AC mucin gene (expressed in the gastric mucosa). Being rich in threonine and serine placed in clusters, these peptides provided several potential sites for O-glycosylation. The glycosylated products were analysed by a combination of electrospray mass spectrometry and capillary electrophoresis in order to isolate the glycopeptides and to determine their sequence by Edman degradation. The O-glycosylation of our MUC5AC motif peptides gave information on the specificity and activity of the gastric microsomal UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase(s). The proline residues and the induced-conformations are of great importance for the recognition of MUC5AC peptides but they are not the only factors for the choice of the O-glycosylation sites. Moreover, for the di-glycosylated peptides, the flanking regions of the proline residues strongly influence the site of the second O-glycosylation.

Transgenic Mouse Reporter to Study Muc5b In Vivo

Dysregulation of gel-forming mucins is associated with many airway diseases. Better knowledge of the pathophysiological mechanisms linking mucins and respiratory diseases will advance the understanding of their pathogenesis and should provide opportunities to develop new therapeutic compounds for treatment. MUC5B and MUC5AC are the two main gel-forming mucins in the respiratory tract. The organization in domains and the expression profile of mouse Muc5b are very similar to those in humans, which makes the mouse a relevant model for studies of the translational activities of human mucins. To assess the in vivo biological functions of Muc5b, a mouse reporter tagged in frame with the green fluorescent protein marker has been engineered by homologous recombination. The proof of concept that this reporter model may be informative for translational studies was confirmed by the finding that interleukin-13 administration in living mice upregulated Muc5b production.

Mucin-Inspired Lubrication on Hydrophobic Surfaces

In the human body, high-molecular-weight glycoproteins called mucins play a key role in protecting epithelial surfaces against pathogenic attack, controlling the passage of molecules toward the tissue and enabling boundary lubrication with very low friction coefficients. However, neither the molecular mechanisms nor the chemical motifs of those biomacromolecules involved in these fundamental processes are fully understood. Thus, identifying the key features that render biomacromolecules such as mucins outstanding boundary lubricants could set the stage for creating versatile artificial superlubricants. We here demonstrate the importance of the hydrophobic terminal peptide domains of porcine gastric mucin (MUC5AC) and human salivary mucin (MUC5B) in the processes of adsorbing to and lubricating a hydrophobic PDMS surface. Tryptic digestion of those mucins results in removal of those terminal domains, which is accompanied by a loss of lubricity as well as surface adsorption. We show that this loss can in part be compensated by attaching hydrophobic phenyl groups to the glycosylated central part of the mucin macromolecule. Furthermore, we demonstrate that the simple biopolysaccharide dextran can be functionalized with hydrophobic groups which confers efficient surface adsorption and good lubricity on PDMS to the polysaccharide.