Home>>Signaling Pathways>> Others>> Others>>Monensin B

Monensin B Sale

(Synonyms: 莫能菌素B) 目录号 : GC61080

MonensinB是肉桂链霉菌生产的聚酮化合物。肉桂链霉菌的发酵产生MonensinA和MonensinB的混合物,其比例取决于乙基丙二酰辅酶A和甲基丙二酰辅酶A的相对浓度。

Monensin B Chemical Structure

Cas No.:30485-16-6

规格 价格 库存 购买数量
1mg
¥1,440.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Monensin B is a polyketide produced by Streptomyces cinnamonensis. Fermentations of Streptomyces cinnamonensis produce a mixture of Monensin A and Monensin B in a ratio dependent upon the relative concentrations of ethylmalonyl-CoA and methylmalonyl-CoA[1].

[1]. H Liu, et al. Role of crotonyl coenzyme A reductase in determining the ratio of polyketides monensin A and monensin B produced by Streptomyces cinnamonensis. J Bacteriol. 1999 Nov;181(21):6806-13.

Chemical Properties

Cas No. 30485-16-6 SDF
别名 莫能菌素B
Canonical SMILES C[C@]1([C@]2([H])O[C@@](CC2)([C@]3([H])O[C@]([C@@]4([H])O[C@](O)([C@@H](C[C@@H]4C)C)CO)([H])C[C@@H]3C)C)O[C@@]5(CC1)O[C@]([C@@H]([C@H](C5)O)C)([H])[C@@H](C)[C@@H](OC)[C@H](C)C(O)=O
分子式 C35H60O11 分子量 656.84
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5224 mL 7.6122 mL 15.2244 mL
5 mM 0.3045 mL 1.5224 mL 3.0449 mL
10 mM 0.1522 mL 0.7612 mL 1.5224 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Role of crotonyl coenzyme A reductase in determining the ratio of polyketides monensin A and Monensin B produced by Streptomyces cinnamonensis

J Bacteriol 1999 Nov;181(21):6806-13.PMID:10542184DOI:10.1128/JB.181.21.6806-6813.1999.

The ccr gene, encoding crotonyl coenzyme A (CoA) reductase (CCR), was cloned from Streptomyces cinnamonensis C730.1 and shown to encode a protein with 90% amino acid sequence identity to the CCRs of Streptomyces collinus and Streptomyces coelicolor. A ccr-disrupted mutant, S. cinnamonensis L1, was constructed by inserting the hyg resistance gene into a unique BglII site within the ccr coding region. By use of the ermE* promoter, the S. collinus ccr gene was expressed from plasmids in S. cinnamonensis C730. 1/pHL18 and L1/pHL18. CCR activity in mutant L1 was shown to decrease by more than 90% in both yeast extract-malt extract (YEME) medium and a complex fermentation medium, compared to that in wild-type C730.1. Compared to C730.1, mutants C730.1/pHL18 and L1/pHL18 exhibited a huge increase in CCR activity (14- and 13-fold, respectively) in YEME medium and a moderate increase (3.7- and 2. 7-fold, respectively) in the complex fermentation medium. In the complex fermentation medium, S. cinnamonensis L1 produced monensins A and B in a ratio of 12:88, dramatically lower than the 50:50 ratio observed for both C730.1 and C730.1/pHL18. Plasmid (pHL18)-based expression of the S. collinus ccr gene in mutant L1 increased the monensin A/Monensin B ratio to 42:58. Labeling experiments with [1, 2-(13)C(2)]acetate demonstrated the same levels of intact incorporation of this material into the butyrate-derived portion of monensin A in both C730.1 and mutant C730.1/pLH18 but a markedly decreased level of such incorporation in mutant L1. The addition of crotonic acid at 15 mM led to significant increases in the monensin A/Monensin B ratio in C730.1 and C730.1/pHL18 but had no effect in S. cinnamonensis L1. These results demonstrate that CCR plays a significant role in providing butyryl-CoA for monensin A biosynthesis and is present in wild-type S. cinnamonensis C730.1 at a level sufficient that the availability of the appropriate substrate (crotonyl-CoA) is limiting.

MeaA, a putative coenzyme B12-dependent mutase, provides methylmalonyl coenzyme A for monensin biosynthesis in Streptomyces cinnamonensis

J Bacteriol 2001 Mar;183(6):2071-80.PMID:11222607DOI:10.1128/JB.183.6.2071-2080.2001.

The ratio of the major monensin analogs produced by Streptomyces cinnamonensis is dependent upon the relative levels of the biosynthetic precursors methylmalonyl-coenzyme A (CoA) (monensin A and Monensin B) and ethylmalonyl-CoA (monensin A). The meaA gene of this organism was cloned and sequenced and was shown to encode a putative 74-kDa protein with significant amino acid sequence identity to methylmalonyl-CoA mutase (MCM) (40%) and isobutyryl-CoA mutase (ICM) large subunit (36%) and small subunit (52%) from the same organism. The predicted C terminus of MeaA contains structural features highly conserved in all coenzyme B12-dependent mutases. Plasmid-based expression of meaA from the ermE* promoter in the S. cinnamonensis C730.1 strain resulted in a decreased ratio of monensin A to Monensin B, from 1:1 to 1:3. Conversely, this ratio increased to 4:1 in a meaA mutant, S. cinnamonensis WM2 (generated from the C730.1 strain by insertional inactivation of meaA by using the erythromycin resistance gene). In both of these experiments, the overall monensin titers were not significantly affected. Monensin titers, however, did decrease over 90% in an S. cinnamonensis WD2 strain (an icm meaA mutant). Monensin titers in the WD2 strain were restored to at least wild-type levels by plasmid-based expression of the meaA gene or the Amycolatopsis mediterranei mutAB genes (encoding MCM). In contrast, growth of the WD2 strain in the presence of 0.8 M valine led only to a partial restoration (<25%) of monensin titers. These results demonstrate that the meaA gene product is significantly involved in methylmalonyl-CoA production in S. cinnamonensis and that under the tested conditions the presence of both MeaA and ICM is crucial for monensin production in the WD2 strain. These results also indicate that valine degradation, implicated in providing methylmalonyl-CoA precursors for many polyketide biosynthetic processes, does not do so to a significant degree for monensin biosynthesis in the WD2 mutant.

Isolation of novel antibiotics X-14667A and X-14667B from Streptomyces cinnamonensis subsp. urethanofaciens and their characterization as 2-phenethylurethanes of monensins B and A

J Antibiot (Tokyo) 1981 Oct;34(10):1248-52.PMID:7309620DOI:10.7164/antibiotics.34.1248.

Antibiotics X-14667A (1) and X-14667B (2) are novel monovalent polyether antibiotics of the spiroketal type isolated from fermented cultures of Streptomyces cinnamonensis subsp. urethanofaciens together with monensin (3), its lower homolog, factor B (4) and 1,3-diphenethylurea (6). By a combination of microanalysis, mass spectrometry and 13C nmr, antibiotics X-14667A and B have been shown to be natural 2-phenethylurethanes of Monensin B and A respectively. Both structures have been confirmed by reacting the appropriate monensin with 2-phenethylisocyanate to yield semi-synthetic compounds that are identical to the natural products.

Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation

Microbiology (Reading) 2004 Oct;150(Pt 10):3463-72.PMID:15470123DOI:10.1099/mic.0.27251-0.

It is demonstrated that crotonyl-CoA reductase (CCR) plays a significant role in providing methylmalonyl-CoA for monensin biosynthesis in oil-based 10-day fermentations of Streptomyces cinnamonensis. Under these conditions S. cinnamonensis L1, a derivative of a high-titre producing industrial strain C730.1 in which ccr has been insertionally inactivated, produces only 15 % of the monensin yield. Labelling of the coenzyme A pools using [3H]-beta-alanine and analysis of intracellular acyl-CoAs in the L1 and C730.1 strains demonstrated that loss of ccr led to lower levels of the monensin precursor methymalonyl-CoA, relative to coenzyme A. Expression of a heterologous ccr gene from Streptomyces collinus fully restored monensin production to the L1 mutant. Using C730.1 and an oil-based extended fermentation an exceptionally efficient and comparably intact incorporation of ethyl [3,4-13C2]acetoacetate into both the ethylmalonyl-CoA- and methylmalonyl-CoA-derived positions of monensin was observed. No labelling of the malonyl-CoA-derived positions was observed. The opposite result was observed when the incorporation study was carried out with the L1 strain, demonstrating that ccr insertional inactivation has led to a reversal of carbon flux from an acetoacetyl-CoA intermediate. These results dramatically contrast similar analyses of the L1 mutant in glucose-soybean medium which indicate a role in providing ethylmalonyl-CoA but not methylmalonyl-CoA, thus causing a change in the ratio of monensin A and Monensin B analogues, but not the overall monensin titre. These results demonstrate that the relative contributions of different pathways and enzymes to providing polyketide precursors are thus dependent upon the fermentation conditions. Furthermore, the generally accepted pathways for providing methylmalonyl-CoA for polyketide production may not be significant for the S. cinnamonensis high-titre monensin producer in oil-based extended fermentations. An alternative pathway, leading from the fatty acid catabolite acetyl-CoA, via the CCR-catalysed reaction is proposed.

Biosynthesis of monensins A and B: the role of isoleucine

Folia Microbiol (Praha) 1986;31(1):8-14.PMID:3957157DOI:10.1007/BF02928674.

Isoleucine added to the cultivation medium of Streptomyces cinnamonensis C-100-5 induced a relative increase of the production of Monensin B at the expense of monensin A. U-14C-Isoleucine was found not to be a specific Monensin B precursor. The incorporation of 1-13C-2-methylbutyrate into monensins A and B showed the label to be evenly incorporated in both products at carbon atoms originating from C(1) of propionate. In regulatory mutants insensitive to 2-amino-3-chlorobutyrate isoleucine influenced the production of monensins only slightly but strains resistant to 2-aminobutyrate and norleucine decreased their total production by 2-12% in the presence of isoleucine which was associated with a decrease of monensin A content by 14-52%. The inhibitory effect of isoleucine on the biosynthesis of valine, a specific precursor of the butyrate unit of monensin A, is discussed.