Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Maltotriose

Maltotriose Sale

(Synonyms: 麦芽三糖) 目录号 : GC30706

A trisaccharide

Maltotriose Chemical Structure

Cas No.:1109-28-0

规格 价格 库存 购买数量
10mM (in 1mL Water)
¥589.00
现货
100mg
¥536.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Maltotriose is a trisaccharide consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It serves as an inducer of the maltose regulon of E. coli.1

1.Raibaud, O., and Richet, E.Maltotriose is the inducer of the maltose regulon of Escherichia coliJ. Bacteriol.169(7)3059-3061(1987)

Chemical Properties

Cas No. 1109-28-0 SDF
别名 麦芽三糖
Canonical SMILES OC[C@@H](O[C@@]1(O[C@@H]2[C@@H](CO)O[C@@H]([C@@H]([C@H]2O)O)O[C@@]([H])([C@@H]([C@H](C=O)O)O)[C@@H](CO)O)[H])[C@H]([C@@H]([C@H]1O)O)O
分子式 C18H32O16 分子量 504.44
溶解度 DMSO : ≤15mg/mL, Water : 150 mg/mL 储存条件 Store at -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9824 mL 9.912 mL 19.824 mL
5 mM 0.3965 mL 1.9824 mL 3.9648 mL
10 mM 0.1982 mL 0.9912 mL 1.9824 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections

Currently, there are no non-invasive tools to accurately diagnose wound and surgical site infections before they become systemic or cause significant anatomical damage. Fluorescence and photoacoustic imaging are cost-effective imaging modalities that can be used to noninvasively diagnose bacterial infections when paired with a molecularly targeted infection imaging agent. Here, we develop a fluorescent derivative of maltotriose (Cy7-1-maltotriose), which is shown to be taken up in a variety of gram-positive and gram-negative bacterial strains in vitro. In vivo fluorescence and photoacoustic imaging studies highlight the ability of this probe to detect infection, assess infection burden, and visualize the effectiveness of antibiotic treatment in E. coli-induced myositis and a clinically relevant S. aureus wound infection murine model. In addition, we show that maltotriose is an ideal scaffold for infection imaging agents encompassing better pharmacokinetic properties and in vivo stability than other maltodextrins (e.g. maltohexose).

Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease

In brewing, maltotriose is the least preferred sugar for uptake by Saccharomyces cerevisiae cells. Although the AGT1 permease is required for efficient maltotriose fermentation, we have described a new phenotype in some agt1Δ strains of which the cells do not grow on maltotriose during the first 3-4 days of incubation, but after that, they start to grow on the sugar aerobically. Aiming to characterize this new phenotype, we performed microarray gene expression analysis which indicated upregulation of high-affinity glucose transporters (HXT4, HXT6 and HXT7) and α-glucosidases (MAL12 and IMA5) during this delayed cellular growth. Since these results suggested that this phenotype might be due to extracellular hydrolysis of maltotriose, we attempted to detect glucose in the media during growth. When an hxt-null agt1Δ strain was grown on maltotriose, it also showed the delayed growth on this carbon source, and glucose accumulated in the medium during maltotriose consumption. Considering that the poorly characterized α-glucosidase encoded by IMA5 was among the overexpressed genes, we deleted this gene from an agt1Δ strain that showed delayed growth on maltotriose. The ima5Δ agt1Δ strain showed no maltotriose utilization even after 200 h of incubation, suggesting that IMA5 is likely responsible for the extracellular maltotriose hydrolysis.
Significance and impact of the study: Maltotriose is the second most abundant sugar present in brewing. However, many yeast strains have difficulties to consume maltotriose, mainly because of its low uptake rate by the yeast cells when compared to glucose and maltose uptake. The AGT1 permease is required for efficient maltotriose fermentation, but some strains deleted in this gene are still able to grow on maltotriose after an extensive lag phase. This manuscript shows that such delayed growth on maltotriose is a consequence of extracellular hydrolysis of the sugar. Our results also indicate that the IMA5-encoded α-glucosidase is likely the enzyme responsible for this phenotype.

Maltotriose-Chlorin e6 Conjugate Linked via Tetraethyleneglycol as an Advanced Photosensitizer for Photodynamic Therapy. Synthesis and Antitumor Activities against Canine and Mouse Mammary Carcinoma Cells

Glycoconjugated chlorins represent a promising class of compounds that meet the requirements for the third-generation photosensitizer (PS) for photodynamic therapy (PDT). We have focused on the use of glucose (Glc) to improve the performance of the PS based on the Warburg effect-a phenomenon where tumors consume higher Glc levels than normal cells. However, as a matter of fact, Glc-conjugation has a poor efficacy in hydrophilic modification; thus, the resultant PS is not suitable for intravenous injection. In this study, a Glc-based oligosaccharide, such as maltotriose (Mal3), is conjugated to chlorin e6 (Ce6). The conjugation is assisted by two additional molecular tools, such as propargyl amine and a tetraethylene glycol (TEG) derivative. This route produced the target Mal3-Ce6 conjugate linked via the TEG spacer (Mal3-TEG-Ce6), which shows the required photoabsorption properties in the physiological media. The PDT test using canine mammary carcinoma (SNP) cells suggested that the antitumor activity of Mal3-TEG-Ce6 is extremely high. Furthermore, in vitro tests against mouse mammary carcinoma (EMT6) cells have been demonstrated, providing insights into the photocytotoxicity, subcellular localization, and analysis of cell death and reactive oxygen species (ROS) generation for the PDT system with Mal3-TEG-Ce6. Both apoptosis and necrosis of the EMT6 cells occur by ROS that is generated via the photochemical reaction between Mal3-TEG-Ce6 and molecular oxygen. Consequently, Mal3-TEG-Ce6 is shown to be a PS showing the currently desired properties.

Mechanistic aspects of maltotriose-conjugate translocation to the Gram-negative bacteria cytoplasm

Small molecule accumulation in Gram-negative bacteria is a key challenge to discover novel antibiotics, because of their two membranes and efflux pumps expelling toxic molecules. An approach to overcome this challenge is to hijack uptake pathways so that bacterial transporters shuttle the antibiotic to the cytoplasm. Here, we have characterized maltodextrin-fluorophore conjugates that can pass through both the outer and inner membranes mediated by components of the Escherichia coli maltose regulon. Single-channel electrophysiology recording demonstrated that the compounds permeate across the LamB channel leading to accumulation in the periplasm. We have also demonstrated that a maltotriose conjugate distributes into both the periplasm and cytoplasm. In the cytoplasm, the molecule activates the maltose regulon and triggers the expression of maltose binding protein in the periplasmic space indicating that the complete maltose entry pathway is induced. This maltotriose conjugate can (i) reach the periplasmic and cytoplasmic compartments to significant internal concentrations and (ii) auto-induce its own entry pathway via the activation of the maltose regulon, representing an interesting prototype to deliver molecules to the cytoplasm of Gram-negative bacteria.

Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL

Cancer nanotherapeutics have shown promise in resolving some of the limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, and low therapeutic indices, Among the various nanoparticles that are available, dendrimers, highly branched macromolecules with a specific size and shape, are one of the most promising ones. In this preliminary study, we tested the anti-tumor activity of maltotriose-modified fourth-generation poly(propylene imine) glycodendrimers (PPI-G4-M3) in vivo in the subcutaneous MEC-1 xenograft model of human chronic lymphocytic leukemia (CLL) in NOD scid gamma mice. Fludarabine was used for model validation and as a positive treatment control. The anti-tumor response was calculated as tumor volume, tumor control ratio, and tumor growth inhibition. The study showed that PPI-G4-M3 inhibited subcutaneous tumor growth more efficiently than fludarabine. The anti-tumor response was dose-dependent. Cationic PPI-G4-M3 showed the highest anti-tumor activity but also higher toxicity than the neutral dendrimers and fludarabine. These first promising results warrant further studies in the optimization of dendrimers charge, dose, route and schedule of administration to combat CLL.