Home>>Signaling Pathways>> Microbiology & Virology>> Bacterial>>MAC13772

MAC13772 Sale

(Synonyms: 2-(2-硝基苯基)硫代乙酮肼) 目录号 : GC38925

MAC13772 是 BioA 酶的有效抑制剂 (IC50=250 nM),生物素合成的倒数第二步。MAC13772 是一种新型抗菌化合物。

MAC13772 Chemical Structure

Cas No.:4871-40-3

规格 价格 库存 购买数量
5mg
¥540.00
现货
10mg
¥900.00
现货
25mg
¥1,440.00
现货
50mg
¥2,430.00
现货
100mg
¥4,050.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

MAC13772 is a potent inhibitor of the enzyme BioA (IC50=250 nM), the antepenultimate step in biotin biosynthesis. MAC13772 is a novel antibacterial compound[1].

[1]. Zlitni S, et al. Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat Chem Biol. 2013 Dec;9(12):796-804.

Chemical Properties

Cas No. 4871-40-3 SDF
别名 2-(2-硝基苯基)硫代乙酮肼
Canonical SMILES O=C(NN)CSC1=CC=CC=C1[N+]([O-])=O
分子式 C8H9N3O3S 分子量 227.24
溶解度 DMSO: 17.86 mg/mL (78.60 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.4006 mL 22.0032 mL 44.0063 mL
5 mM 0.8801 mL 4.4006 mL 8.8013 mL
10 mM 0.4401 mL 2.2003 mL 4.4006 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation

Nat Chem Biol 2013 Dec;9(12):796-804.PMID:24121552DOI:10.1038/nchembio.1361.

Characterizing new drugs and chemical probes of biological systems is hindered by difficulties in identifying the mechanism of action (MOA) of biologically active molecules. Here we present a metabolite suppression approach to explore the MOA of antibacterial compounds under nutrient restriction. We assembled an array of metabolites that can be screened for suppressors of inhibitory molecules. Further, we identified inhibitors of Escherichia coli growth under nutrient limitation and charted their interactions with our metabolite array. This strategy led to the discovery and characterization of three new antibacterial compounds, MAC168425, MAC173979 and MAC13772. We showed that MAC168425 interferes with glycine metabolism, MAC173979 is a time-dependent inhibitor of p-aminobenzoic acid biosynthesis and MAC13772 inhibits biotin biosynthesis. We conclude that metabolite suppression profiling is an effective approach to focus MOA studies on compounds impairing metabolic capabilities. Such bioactives can serve as chemical probes of bacterial physiology and as leads for antibacterial drug development.

Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens

Nat Microbiol 2020 Jan;5(1):93-101.PMID:31659298DOI:10.1038/s41564-019-0595-2.

To revitalize the antibiotic pipeline, it is critical to identify and validate new antimicrobial targets1. In Mycobacteria tuberculosis and Francisella tularensis, biotin biosynthesis is a key fitness determinant during infection2-5, making it a high-priority target. However, biotin biosynthesis has been overlooked for priority pathogens such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. This can be attributed to the lack of attenuation observed for biotin biosynthesis genes during transposon mutagenesis studies in mouse infection models6-9. Previous studies did not consider the 40-fold higher concentration of biotin in mouse plasma compared to human plasma. Here, we leveraged the unique affinity of streptavidin to develop a mouse infection model with human levels of biotin. Our model suggests that biotin biosynthesis is essential during infection with A. baumannii, K. pneumoniae and P. aeruginosa. Encouragingly, we establish the capacity of our model to uncover in vivo activity for the biotin biosynthesis inhibitor MAC13772. Our model addresses the disconnect in biotin levels between humans and mice, and explains the failure of potent biotin biosynthesis inhibitors in standard mouse infection models.

The opportunistic pathogen Pseudomonas aeruginosa exploits bacterial biotin synthesis pathway to benefit its infectivity

PLoS Pathog 2023 Jan 23;19(1):e1011110.PMID:36689471DOI:10.1371/journal.ppat.1011110.

Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.