Home>>Signaling Pathways>> Neuroscience>> mAChR>>M3 receptor antagonist 1

M3 receptor antagonist 1 Sale

目录号 : GC31984

M3 受体拮抗剂 1 是一种选择性、长效和竞争性毒蕈碱 M3 受体拮抗剂。

M3 receptor antagonist 1 Chemical Structure

Cas No.:1004312-94-0

规格 价格 库存 购买数量
1mg
¥5,177.00
现货
5mg
¥10,264.00
现货
10mg
¥17,493.00
现货
20mg
¥30,791.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

M3 receptor antagonist 1 is a muscarinic M3-receptor antagonist extracted from patent WO 2008012290 A2, formula Ic.

[1]. Gabriele Amari, et al. Quinuclidine derivatives as m3 antagonists. WO 2008012290 A2.

Chemical Properties

Cas No. 1004312-94-0 SDF
Canonical SMILES O=C(C1=CC=CS1)C[N+]23C[C@@H](C(CC3)CC2)OC(N(C4=CC(F)=CC=C4)CC5=CC(F)=C(F)C(F)=C5)=O.[Br-]
分子式 C27H25BrF4N2O3S 分子量 613.46
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6301 mL 8.1505 mL 16.301 mL
5 mM 0.326 mL 1.6301 mL 3.2602 mL
10 mM 0.163 mL 0.815 mL 1.6301 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

RORγt antagonist suppresses M3 muscarinic acetylcholine receptor-induced Sj?gren's syndrome-like sialadenitis

We showed recently that M3 muscarinic acetylcholine receptor (M3R)-reactive CD3+ T cells play a pathogenic role in the development of murine autoimmune sialadenitis (MIS), which mimics Sj?gren's syndrome (SS). The aim of this study was to determine the effectiveness and mechanism of action of retinoic acid-related orphan receptor-gamma t (RORγt) antagonist (A213) in MIS. Splenocytes from M3R knockout (M3R-/- ) mice immunized with murine M3R peptide mixture were inoculated into recombination-activating gene 1 knockout (Rag-1-/- ) mice (M3R-/- →Rag-1-/- ) with MIS. Immunized M3R-/- mice (pretransfer treatment) and M3R-/- →Rag-1-/- mice (post-transfer treatment) were treated with A213 every 3 days. Salivary volume, severity of sialadenitis and cytokine production from M3R peptide-stimulated splenocytes and lymph node cells were examined. Effects of A213 on cytokine production were analysed by enzyme-linked immunosorbent assay (ELISA) and on T helper type 1 (Th1), Th17 and Th2 differentiation from CD4+ T cells by flow cytometry. Pretransfer A213 treatment maintained salivary volume, improved MIS and reduced interferon (IFN)-γ and interleukin (IL)-17 production significantly compared with phosphate-buffered saline (PBS) (P < 0·05). These suppressive effects involved CD4+ T cells rather than CD11c+ cells. Post-transfer treatment with A213 increased salivary volume (P < 0·05), suppressed MIS (P < 0·005) and reduced IFN-γ and IL-17 production (P < 0·05). In vitro, A213 suppressed IFN-γ and IL-17 production from M3R-stimulated splenocytes and CD4+ T cells of immunized M3R-/- mice (P < 0·05). In contrast with M3R specific responses, A213 suppressed only IL-17 production from Th17 differentiated CD4+ T cells without any effect on Th1 and Th2 differentiation in vitro. Our findings suggested that RORγt antagonism is potentially suitable treatment strategy for SS-like sialadenitis through suppression of IL-17 and IFN-γ production by M3R-specific T cells.

A Selective M1 and M3 Receptor Antagonist, Penehyclidine Hydrochloride, Exerts Antidepressant-Like Effect in Mice

Recent studies indicate that anti-muscarinic receptor is a prospective strategy to treat depression. Although non-selective antagonist of muscarinic receptor scopolamine exhibits rapid and robust antidepressant-like effect, it still has various side effects including abuse risk. Penehyclidine hydrochloride (PHC) is a novel clinical anti-cholinergic drug derived from scopolamine in China, which selectively blocks M1 and M3 muscarinic receptor. Therefore, the objective of this study was to evaluate whether PHC would manifest antidepressant-like effects. Forced swim test (FST), tail suspension test (TST) and chronic unpredictable mild stress (CUMS) model of depression were explored to assess the antidepressant-like effect. Western blotting was further performed to detect the effects of PHC on the brain-derived neurotrophic factor (BDNF) signal cascade. Immunofluorescence was used to observe the activation of astrocyte. Moreover, different pharmacological inhibitors were applied to clarify the antidepressant-like mechanism. The results of the present experiments revealed that PHC decreased the immobility time of FST and TST in mice. In the CUMS model, PHC rapidly ameliorated anhedonia-like behavior (within 4 days), accompanying with the enhanced expression of BDNF and phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) in the hippocampus. In addition, blockade of the BDNF release by verapamil and activation of its Trk B receptor by K252a, rather than inhibition of opioid system by naloxone or sigma receptor by BD1047, abolished the antidepressant-like effects of PHC in mice. The findings suggest that PHC, an anti-muscarinic drug in clinical use, elicits rapid onset antidepressant-like effect, shedding light on the development of new antidepressants.

Darifenacin: a muscarinic M3-selective receptor antagonist for the treatment of overactive bladder

Darifenacin is a novel, muscarinic M(3)-selective receptor antagonist with up to 59-fold selectivity for M(3) receptors compared with other muscarinic receptor subtypes and a low relative affinity for M(1) and M(2) receptors. This profile may explain its clinical efficacy in overactive bladder (OAB), the observed absence of adverse effects on cognitive function and reduced cardiovascular risks. Large-scale clinical trials have confirmed that darifenacin 7.5 and 15 mg/day provide rapid and meaningful improvement across a range of OAB symptoms, but with CNS and cardiac adverse event rates comparable to placebo. On this basis, darifenacin seems to meet the standard for an effective OAB pharmacotherapy that is well-tolerated and, more importantly, minimises the risk of safety-related adverse effects.

Bronchodilator activity of (3R)-3-[[[(3-fluorophenyl)[(3,4,5-trifluorophenyl)methyl]amino] carbonyl]oxy]-1-[2-oxo-2-(2-thienyl)ethyl]-1-azoniabicyclo[2.2.2]octane bromide (CHF5407), a potent, long-acting, and selective muscarinic M3 receptor antagonist

The novel quaternary ammonium salt (3R)-3-[[[(3-fluorophenyl)[(3,4,5-trifluorophenyl)methyl]amino]carbonyl]oxy]-1-[2-oxo-2-(2-thienyl)ethyl]-1-azoniabicyclo[2.2.2]octane bromide (CHF5407) showed subnanomolar affinities for human muscarinic M1 (hM1), M2 (hM2), and M3 (hM3) receptors and dissociated very slowly from hM3 receptors (t(&frac12;) = 166 min) with a large part of the receptorial complex (54%) remaining undissociated at 32 h from radioligand washout. In contrast, [(3)H]CHF5407 dissociated quickly from hM2 receptors (t(&frac12;) = 31 min), whereas [(3)H]tiotropium dissociated slowly from both hM3 (t(&frac12;) = 163 min) and hM2 receptor (t(&frac12;) = 297 min). In the guinea pig isolated trachea and human isolated bronchus, CHF5407 produced a potent (pIC(50) = 9.0-9.6) and long-lasting (up to 24 h) inhibition of M3 receptor-mediated contractile responses to carbachol. In the guinea pig electrically driven left atrium, the M2 receptor-mediated inhibitory response to carbachol was recovered more quickly in CHF5407-pretreated than in tiotropium-pretreated preparations. CHF5407, administered intratracheally to anesthetized guinea pigs, potently inhibited acetylcholine (Ach)-induced bronchoconstriction with an ED(50) value of 0.15 nmol/kg. The effect was sustained over a period of 24 h, with a residual 57% inhibition 48 h after antagonist administration at 1 nmol/kg. In conscious guinea pigs, inhaled CHF5407 inhibited Ach-induced bronchoconstriction for at least 24 h as did tiotropium at similar dosages. Cardiovascular parameters in anesthetized guinea pigs were not significantly changed by CHF5407, up to 100 nmol/kg i.v. and up to 1000 nmol/kg i.t. In conclusion, CHF5407 shows a prolonged antibronchospastic activity both in vitro and in vivo, caused by a very slow dissociation from M3 receptors. In contrast, CHF5407 is markedly short-acting at M2 receptors, a behavior not shared by tiotropium.

Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain

A family of receptor subtypes, defined either by molecular (m1-m5) or pharmacological (M1-M4) analysis, mediates muscarinic cholinergic neurotransmission in brain. The distribution and functions of the m3 receptor protein in brain and its relation to M3 ligand binding sites are poorly understood. To better characterize the native brain receptors, subtype-specific antibodies reactive with the putative third inner loops were used: (i) to measure the abundance of m3 protein and its regional distribution in rat brain by immunoprecipitation; (ii) to determine the cellular and subcellular distribution of m3 protein by light microscopic immunocytochemistry; and (iii) to compare the distribution of m3 immunoreactivity with the autoradiographic distribution of M3 binding sites labeled by [3H]4-diphenylacetoxy-N-methyl piperidine methioxide in the presence of antagonists selective for the other receptor binding sites. The m3 protein, measured by immunoprecipitation, accounted for 5-10% of total solubilized receptors in all brain regions studied. Immunocytochemistry also revealed a widespread distribution of m3-like immunoreactivity, and localized the subtype to discrete neuronal populations and distinct subcellular compartments. The distribution of m3 protein was consistent with the messenger RNA expression, and like M3 binding sites, the protein was enriched in limbic cortical regions, striatum, hippocampus, anterior thalamic nuclei, superior colliculus and pontine nuclei. However, m3 immunoreactivity and M3 binding were differentially localized in regions and lamina of cortex and hippocampus. The results confirm the presence of m3 protein in brain, its low abundance compared to other muscarinic receptor subtypes, and provide the first immunocytochemical map of its precise localization. The distribution of m3 suggests that it mediates a wide variety of cholinergic processes in brain, including possible roles in learning and memory, motor function and behavioral state control. However, since the distribution of the molecularly-defined receptor protein is distinct from the pharmacologically-defined M3 binding site, investigations of the functions of m3 in brain must await development of more selective ligands or use of non-pharmacological approaches.