Home>>Lipids>> Glycerophospholipids>>Lyso-PAF C-18

Lyso-PAF C-18 Sale

目录号 : GC44104

Deacetylated PAF C-18

Lyso-PAF C-18 Chemical Structure

Cas No.:74430-89-0

规格 价格 库存 购买数量
1mg
¥479.00
现货
5mg
¥960.00
现货
10mg
¥1,679.00
现货
25mg
¥3,598.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Lyso-PAF C-18 can be formed by either the action of PAF-AH on PAF C-18 or by the action of a CoA-independent transacylase on 1-O-octadecyl-2-acyl-glycerophosphocholine. Lyso PAF C-18 is a substrate for either PAF C-18 formation by the remodeling pathway or selective acylation with arachidonic acid by a CoA-independent transacylase.

Chemical Properties

Cas No. 74430-89-0 SDF
Canonical SMILES O=P(OCC[N+](C)(C)C)([O-])OC[C@H](O)COCCCCCCCCCCCCCCCCCC
分子式 C26H56NO6P 分子量 509.7
溶解度 DMF: 10 mg/ml,DMSO: 10 mg/ml,Ethanol: 10 mg/ml,PBS (pH 7.2): 10 mg/ml,Water: 20 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9619 mL 9.8097 mL 19.6194 mL
5 mM 0.3924 mL 1.9619 mL 3.9239 mL
10 mM 0.1962 mL 0.981 mL 1.9619 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry

Clin Biochem 2016 Sep;49(13-14):962-6.PMID:27211699DOI:10.1016/j.clinbiochem.2016.05.016.

Objectives: Nonalcoholic fatty liver disease (NAFLD), a main liver disease around the world, is closely associated with insulin resistance, type 2 diabetes mellitus (T2DM) and other metabolic diseases. The objective of this study is to identify distinct metabolites of NAFLD patients with or without T2DM. Design and methods: We used a biomarker-discovery population to find distinct metabolites of NAFLD patients with or without T2DM. Then, a validation population was applied to test the model of the biomarker-discovery population. All the individuals received anthropometric and common biochemical measurements. The metabolic data were analyzed by multivariable statistical analyses using ultra-high-performance liquid chromatography/quadrupole time-of-flight-tandem mass spectrometry. Results: There were 7, 7, 2 metabolites in the positive electrospray ionization (ESI(+)) mode, which were identified between groups from both the biomarker-discovery and validation population. The NAFLD group showed higher concentrations of oleamide, l-phenylalanine, l-proline, bilirubin, l-palmitoylcarnitine, and PC (20:5) and a lower concentration of Lyso-PAF C-18 than those of control. Compared with the control group, the NAFLD+T2DM group displayed higher oleamide, l-leucine, LysoPC (14:0), bilirubin, tetradecenoylcarnitine, linoleyl carnitine, and tetradecadiencarnitine in serum. Tetradecenoylcarnitine and tetradecadiencarnitine were more elevated in patients with NAFLD+T2DM than in the NAFLD group. Conclusions: Serum metabonomic analyses displayed great metabolic changes in patients with NAFLD and NAFLD plus T2DM. Our study is beneficial in providing a further view into the pathogenesis and pathophysiology of NAFLD and NAFLD plus T2DM, which might be useful for the prevention and therapy of NAFLD and NAFLD plus T2DM.