Home>>Signaling Pathways>> Others>> Others>>L-Threonine derivative-1

L-Threonine derivative-1 Sale

目录号 : GC30648

L-Threoninederivative-1是一种乙酰水杨酸-L-苏氨酸酯,来自专利US20060287244A1。

L-Threonine derivative-1 Chemical Structure

Cas No.:852055-88-0

规格 价格 库存 购买数量
1mg
¥4,016.00
现货
5mg
¥8,033.00
现货
10mg
¥14,280.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

L-Threonine derivative-1 is a acetylsalicylic-L-threonine ester extracted from patent US 20060287244 A1.

[1]. V. Chandran. L-Threonine derivatives of high therapeutic index. US 20060287244 A1.

Chemical Properties

Cas No. 852055-88-0 SDF
Canonical SMILES O=C(O[C@H](C)[C@H](N)C(O)=O)C1=CC=CC=C1OC(C)=O
分子式 C13H15NO6 分子量 281.26
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.5554 mL 17.7771 mL 35.5543 mL
5 mM 0.7111 mL 3.5554 mL 7.1109 mL
10 mM 0.3555 mL 1.7777 mL 3.5554 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Hydroxybenzamide derivatives protect pancreatic β cell by suppressing unfolded protein response activation

Endoplasmic reticulum (ER) stress-induced Pancreatic β-cell dysfunction and death plays important roles in the development of diabetes. The 1,2,3-triazole derivative 1 is one of only a few structures that have thus far been identified that protect β cells against ER stress, but it is limited for its narrow activity range. In this study, we designed and synthesized a series of hydroxybenzamide (HBA) derivatives in which the triazole pharmacophore was substituted with an amide linker. Structure-activity relationship studies identified WO3i (3-hydroxy-N-(4-[trifluoromethyl]benzyl)benzamide) that possesses β-cell protective activity against ER stress at a 100% maximal activity with EC50 at 0.19 μM). We showed that WO3i suppresses the expression of CHOP, a key mediator of ER stress-induced apoptosis, and the activation of apoptotic genes. Mechanistically, we further showed that WO3i suppresses the ER stress-induced activation of all three pathways of unfolded protein response-ATF6, IRE1α, and PERK. Identification of this novel β-cell-protective scaffold thus provides a new promising modality for the potential for drug development for the treatment of diabetes.

New potent and selective inhibitor of Pim-1/3 protein kinases sensitizes human colon carcinoma cells to doxorubicin

The Pim protein kinases (provirus insertion site of Moloney murine leukemia virus) have been identified as important actors involved in tumor cell survival, proliferation, migration and invasion. Therefore, inhibition of Pim activity by low molecular weight compounds is under investigation as a part of anticancer therapeutic strategies. We have synthesized a series of pyrrolo[2,3-a]carbazole derivatives that significantly inhibited Pim protein kinases at submicromolar concentrations. Particularly, benzodiazocine derivative 1 potently inhibited Pim-1 and -3 isoforms in in vitro kinase assays (IC50 8 nM and 13 nM, respectively), whereas Pim-2 activity was less affected (IC50 350 nM). We show here that no inhibitory effect of 1 was detectable at 1 ?M against other 22 serine/threonine and tyrosine kinases. In addition, 1, possessing a planar pyrrolocarbazole scaffold, demonstrated no significant binding to DNA, nor was it a potent topoisomerase I inhibitor, suggesting that 1 is likely to be highly selective for Pim-1 and -3. Importantly, whereas 1 exerted a negligible cytotoxicity for human colon carcinoma HCT116 cell line at concentrations >10 ?M within 72 h of cell exposure, it synergized at nontoxic concentrations with the antitumor drug doxorubicin (Dox) in killing HCT116 cells: IC50 of Dox alone and Dox+1 were ~200 nM and ~25 nM, respectively. These data strongly suggest that 1 emerges as a prospective antitumor drug candidate due to its selectivity to individual Pim protein kinases and the ability to potentiate the efficacy of conventional chemotherapeutics.

Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Corynebacterium glutamicum

Glucose is metabolized through central metabolic pathways such as glycolysis and the pentose phosphate pathway (PPP) to synthesize downstream metabolites including amino acids. However, how the split ratio of carbon flux between glycolysis and PPP specifically affects the formation of downstream metabolites remains largely unclear. Here, we conducted a comprehensive metabolomic analysis to investigate the effect of the split ratio between glycolysis and the PPP on the intracellular concentration of amino acids and their derivatives in Corynebacterium glutamicum. The split ratio was varied by exchanging the promoter of a gene encoding glucose 6-phosphate isomerase (PGI). The ratio was correlated with the pgi transcription level and the enzyme activity. Concentrations of threonine and lysine-derivative 1,5-diaminopentane increased with an increase of the split ratio into the PPP. In contrast, concentrations of alanine, leucine, and valine were increased with an increase of the split ratio into glycolysis. These results could provide a new engineering target for improving the production of the amino acids and the derivatives.

CB694, a novel antimitotic with antitumor activities

During the course of a mechanism-based screening program aimed at identifying new antimitotic agents, a novel microtubule depolymerizing piperazine derivative, 1-(5-chloro-2-methoxybenzoyl)-4-(3-chlorophenyl) piperazine, was identified. The compound, designated CB694, caused inhibition of proliferation of a wide range of cancer cell lines, with an average IC50 of 85 nM. A multidrug-resistant cell line was sensitive to inhibition by CB694, suggesting that this compound is a poor substrate for transport by P-glycoprotein. CB694 caused formation of abnormal mitotic structures in HeLa cells. Specifically, CB694 caused a concentration-dependent increase in bipolar spindles with lagging chromosomes and, with slightly higher concentrations, formation of multipolar mitotic spindles. These mitotic abnormalities occurred at concentrations that did not cause significant changes in the appearance or quantity of interphase microtubules. Coincident with the formation of abnormal mitotic spindles, CB694 caused G2/M arrest. CB694 inhibited the assembly of purified tubulin with an IC50 of 2.3 microM. Colchicine binding was strongly inhibited by CB694, suggesting that it binds to tubulin at the colchicine site. Bcl-2 phosphorylation and activation of ERK and JNK and caspase 3-dependent cleavage of PARP were observed in MDA-MB-435 cells treated with CB694. CB694 caused phosphorylation of Aurora A within 8 hr of treatment, and increases in Aurora A protein levels were coincident with mitotic accumulation. The efficacy of CB694 against a syngeneic murine transplantable solid tumor, Mammary 16/C, was also evaluated. CB694 was well tolerated and showed antitumor activity.

Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase

This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzitrans-sialidase (TcTS) inhibitory activity at 1.0mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260μM). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease.