Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>L-Cysteic acid monohydrate

L-Cysteic acid monohydrate Sale

(Synonyms: L-磺基丙氨酸单水合物) 目录号 : GC63040

L-Cysteic acid monohydrate (CAM) is an active endogenous metabolite.

L-Cysteic acid monohydrate Chemical Structure

Cas No.:23537-25-9

规格 价格 库存 购买数量
1 g
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

L-Cysteic acid monohydrate (CAM) is an active endogenous metabolite.

Chemical Properties

Cas No. 23537-25-9 SDF
别名 L-磺基丙氨酸单水合物
分子式 C3H9NO6S 分子量 187.17
溶解度 储存条件
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.3427 mL 26.7137 mL 53.4274 mL
5 mM 1.0685 mL 5.3427 mL 10.6855 mL
10 mM 0.5343 mL 2.6714 mL 5.3427 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Free radical conformations and conversions in X-irradiated single crystals of L-cysteic acid by electron magnetic resonance and density functional theory studies

J Phys Chem A 2008 May 8;112(18):4284-93.PMID:18412406DOI:10.1021/jp711821c.

Single crystals of L-Cysteic acid monohydrate were X-irradiated and studied at 295 K using EPR, ENDOR, and EIE techniques. Three spectroscopically different radicals were observed. These were a deamination radical reduction product (R1), and two oxidation products formed by hydrogen abstraction (radicals R2, R3). R2 and R3 were shown to exhibit the same chemical structure while exhibiting very different geometrical conformations. Cluster DFT calculations at the 6-31G(d,p) level of theory supported the experimental observations for radicals R1 and R2. It was not possible to simulate the R3 radical in any attempted cluster; hence, for this purpose a single molecule approach was used. The precursor radicals for R1, R2, and R3, identified in the low-temperature work on L-Cysteic acid monohydrate by Box and Budzinski, were also investigated using DFT calculations. The experimentally determined EPR parameters for the low-temperature decarboxylated cation could only be reproduced correctly within the cluster when the carboxyl group remained in the proximity of the radical. Only one of the two observed low-temperature carboxyl anions (stable at 4 and 48 K) could be successfully simulated by the DFT calculations. Evidence is presented in support of the conclusions that the carboxyl reduction product already is protonated at 4 K and that the irreversible conversion between the two reduction products is brought forward by an umbrella-type inversion of the carboxyl group.

Solid-State 17O NMR Studies of Sulfonate Jump Dynamics in Crystalline Sulfonic Acids: Insights into the Hydrogen Bonding Effect

J Phys Chem A 2020 Nov 19;124(46):9597-9604.PMID:33151689DOI:10.1021/acs.jpca.0c08198.

We report variable-temperature (VT) 17O solid-state nuclear magnetic resonance (NMR) spectra for three crystalline sulfonic acids: L-Cysteic acid monohydrate (CA), 3-pyridinesulfonic acid (PSA), and p-toluenesulfonic acid monohydrate (TSA). We were able to analyze the experimental VT 17O NMR spectra to obtain the activation barriers for SO3- jumps in these systems. Using the density functional-based tight-binding (DFTB) method, we performed potential energy surface scans for SO3- jumps in the crystal lattice of CA, PSA, and TSA, as well as for three related crystalline sulfonic acids (taurine, homotaurine, and 4-aminobutane-1-sulfonic acid) for which relevant 17O solid-state NMR data are available in the literature. The calculated activation barriers are in reasonable agreement with the experimental values. On the basis of the DFTB results, we hypothesized that activation barriers for SO3- jumps in the crystal lattice depend largely on the hydrogen bonding energy difference between the ground state and the transition state.

Comparison of the effects of pressure on three layered hydrates: a partially successful attempt to predict a high-pressure phase transition

Acta Crystallogr B 2009 Dec;65(Pt 6):731-48.PMID:19923702DOI:10.1107/S0108768109039469.

We report the effect of pressure on the crystal structures of betaine monohydrate (BTM), L-Cysteic acid monohydrate (CAM) and S-4-sulfo-L-phenylalanine monohydrate (SPM). All three structures are composed of layers of zwitterionic molecules separated by layers of water molecules. In BTM the water molecules make donor interactions with the same layer of betaine molecules, and the structure remains in a compressed form of its ambient-pressure phase up to 7.8 GPa. CAM contains bi-layers of L-cysteic acid molecules separated by water molecules which form donor interactions to the bi-layers above and below. This phase is stable up to 6.8 GPa. SPM also contains layers of zwitterionic molecules with the waters acting as hydrogen-bond donors to the layers above and below. SPM undergoes a single-crystal to single-crystal phase transition above 1 GPa in which half the water molecules reorient so as to form one donor interaction with another water molecule within the same layer. In addition, half of the S-4-sulfo-L-phenylalanine molecules change their conformation. The high-pressure phase is stable up to 6.9 GPa, although modest rearrangements in hydrogen bonding and molecular conformation occur at 6.4 GPa. The three hydrates had been selected on the basis of their topological similarity (CAM and SPM) or dissimilarity (BTM) with serine hydrate, which undergoes a phase transition at 5 GPa in which the water molecules change orientation. The phase transition in SPM shows some common features with that in serine hydrate. The principal directions of compression in all three structures were found to correlate with directions of hydrogen bonds and distributions of interstitial voids.