Home>>JNJ-54175446

JNJ-54175446 Sale

目录号 : GC31098

JNJ-54175446是一种有效、选择性、可透过血脑屏障的P2X7受体拮抗剂,对人和大鼠的P2X7受体的pIC50值分别为8.46和8.81。

JNJ-54175446 Chemical Structure

Cas No.:1627902-21-9

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥8,553.00
现货
1mg
¥4,950.00
现货
5mg
¥8,820.00
现货
10mg
¥13,500.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

JNJ-54175446 is a potent and selective brain penetrant P2X7 receptor antagonist, with pIC50s of 8.46 and 8.81 for hP2X7 receptor and rP2X7 receptor, respectively.

JNJ-54175446 (Compound 14) is a potent and selective brain penetrant P2X7 antagonist, with pIC50s of 8.46 and 8.81 for hP2X7 and rP2X7, respectively. JNJ-54175446 shows less potent activity against mouse, dog and Macaque P2X7 (pIC50, 7.8, 7.9 and 8.1, respectively)[1].

JNJ-54175446 shows dose-dependent occupancy with the ED50 of 0.46 mg/kg, corresponding to plasma EC50 of 105 ng/mL[1].

[1]. Letavic MA, et al. 4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate. Send to

Chemical Properties

Cas No. 1627902-21-9 SDF
Canonical SMILES ClC1=C(C=CC=C1C(N2CCC3=C(N=NN3C4=NC=C(F)C=N4)[C@H]2C)=O)C(F)(F)F
分子式 C18H13ClF4N6O 分子量 440.78
溶解度 DMSO: 62.5 mg/mL (141.79 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2687 mL 11.3435 mL 22.6871 mL
5 mM 0.4537 mL 2.2687 mL 4.5374 mL
10 mM 0.2269 mL 1.1344 mL 2.2687 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Characterisation of the pharmacodynamic effects of the P2X7 receptor antagonist JNJ-54175446 using an oral dexamphetamine challenge model in healthy males in a randomised, double-blind, placebo-controlled, multiple ascending dose trial

Background: This is the first report of the pharmacodynamic (PD) effects of the selective, potent and brain-penetrant P2X7 receptor (P2X7R) antagonist JNJ-54175446. Activation of the P2X7R, an adenosine triphosphate-gated ion channel, leads to the production of pro-inflammatory cytokines, which have been linked to neuroinflammation and play a role in the pathogenesis of mood disorders. Previous clinical studies with JNJ-54175446 demonstrated peripheral target engagement of JNJ-54175446 by assessing ex vivo lipopolysaccharide (LPS)-stimulated cytokine production. Blood-brain barrier penetration and a clear dose-receptor occupancy relationship was demonstrated using positron emission tomography. Aims: The objectives of this double-blind, placebo-controlled, translational study were to assess the safety and tolerability of administering multiple doses of JNJ-54175446 and to explore its PD effects using a dexamphetamine challenge. Methods: Subjects (N = 64) were randomised to either JNJ-54175446 (50-450 mg; n = 48) or placebo (n = 16) and underwent a baseline oral 20 mg dexamphetamine challenge followed by 11 consecutive days q.d. dosing with JNJ-54175446/placebo and a randomised crossover dexamphetamine/placebo challenge. Results: At all doses tested, JNJ-54175446 was well tolerated and suppressed the ex vivo LPS-induced release of cytokines. At doses ?100 mg, JNJ-54175446 attenuated dexamphetamine-induced increases in locomotion and enhanced the mood-elevating effects of dexamphetamine, suggesting that a dose that is approximately twice as high is needed to obtain a central PD response compared to the dose needed for maximum peripheral occupancy. Conclusion: Overall, the observed pharmacological profile of JNJ-54175446 in the dexamphetamine challenge paradigm is compatible with a potential mood-modulating effect.

18F-JNJ-64413739, a Novel PET Ligand for the P2X7 Ion Channel: Radiation Dosimetry, Kinetic Modeling, Test-Retest Variability, and Occupancy of the P2X7 Antagonist JNJ-54175446

The P2X7 receptor (P2X7R) is an adenosine triphosphate-gated ion channel that is predominantly expressed on microglial cells in the central nervous system. We report the clinical qualification of P2X7-specific PET ligand 18F-JNJ-64413739 in healthy volunteers, including dosimetry, kinetic modeling, test-retest variability, and blocking by the P2X7 antagonist JNJ-54175446. Methods: Whole-body dosimetry was performed in 3 healthy male subjects by consecutive whole-body PET/CT scanning, estimation of the normalized cumulated activity, and calculation of the effective dose using OLINDA (v1.1). Next, 5 healthy male subjects underwent a 120-min dynamic 18F-JNJ-64413739 PET/MRI scan with arterial blood sampling to determine the appropriate kinetic model. For this purpose, 1- and 2-tissue compartment models and Logan graphic analysis (LGA) were evaluated for estimating regional volumes of distribution (VT). PET/MRI scanning was repeated in 4 of these subjects to evaluate medium-term test-retest variability (interscan interval, 26-97 d). For the single-dose occupancy study, 8 healthy male subjects underwent baseline and postdose 18F-JNJ-64413739 PET/MRI scans 4-6 h after the administration of a single oral dose of JNJ-54175446 (dose range, 5-300 mg). P2X7 occupancies were estimated using a Lassen plot and regional baseline and postdose VTResults: The average (mean ± SD) effective dose was 22.0 ± 1.0 μSv/MBq. The 2-tissue compartment model was the most appropriate kinetic model, with LGA showing very similar results. Regional 2-tissue compartment model VT values were about 3 and were rather homogeneous across all brain regions, with slightly higher estimates for the thalamus, striatum, and brain stem. Between-subject VT variability was relatively high, with cortical VT showing an approximate 3-fold range across subjects. As for time stability, the acquisition time could be reduced to 90 min. The average regional test-retest variability values were 10.7% ± 2.2% for 2-tissue compartment model VT and 11.9% ± 2.2% for LGA VT P2X7 occupancy approached saturation for single doses of JNJ-54175446 higher than 50 mg, and no reference region could be identified. Conclusion:18F-JNJ-64413739 is a suitable PET ligand for the quantification of P2X7R expression in the human brain. It can be used to provide insight into P2X7R expression in health and disease, to evaluate target engagement by P2X7 antagonists, and to guide dose selection.

Clinical pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-54175446, a brain permeable P2X7 antagonist, in a randomised single-ascending dose study in healthy participants

Background: Central nervous system-derived interleukin-1β plays a role in mood disorders. P2X7 receptor activation by adenosine-triphosphate leads to the release of interleukin-1β.
Aims: This first-in-human study evaluated safety, tolerability, pharmacokinetics and pharmacodynamics of a novel central nervous system-penetrant P2X7 receptor antagonist, JNJ-54175446, in healthy participants.
Methods: The study had three parts: an ascending-dose study in fasted participants (0.5-300 mg JNJ-54175446); an ascending-dose study in fed participants (50-600 mg); and a cerebrospinal fluid study (300 mg). Target plasma concentrations were based on estimated plasma effective concentration (EC)50 (105 ng/mL) and EC90 (900 ng/mL) values for central nervous system P2X7 receptor binding.
Results: Seventy-seven participants received a single oral dose of JNJ-54175446 ( n=59) or placebo ( n=18). Area under the curve of concentration time extrapolated to infinity (AUC) increased dose-proportionally; maximum concentration (Cmax) of plasma (Cmax,plasma) increased less than dose-proportionally following single doses of JNJ-54175446. Because food increases bioavailability of JNJ-54175446, higher doses were given with food to evaluate safety at higher exposures. The highest Cmax,plasma reached (600 mg, fed) was 1475±163 ng/mL. JNJ-54175446 Cmax in cerebrospinal fluid, a proxy for brain penetration, was seven times lower than in total plasma; unbound Cmax,plasma and Cmax,CSF were comparable (88.3±35.7 vs 114±39 ng/mL). JNJ-54175446 inhibited lipopolysaccharide/3'-O-(4-benzoylbenzoyl)-ATP-induced interleukin-1β release from peripheral blood in a dose-dependent manner (inhibitory concentration (IC)50:82 ng/mL; 95% confidence interval: 48-94). Thirty-three of 59 (55.9%) participants reported at least one treatment-emergent adverse event; the most common adverse event being headache (11/59, 18.6%).
Conclusion: Plasma exposure of JNJ-54175446 was dose-dependent. No serious adverse events occurred. Single-dose administration of JNJ-54175446>10 mg attenuated ex-vivo lipopolysaccharide-induced interleukin-1β release in peripheral blood. Passive brain penetration of JNJ-54175446 was confirmed.

Translational Model-Informed Dose Selection for a Human Positron Emission Tomography Imaging Study of JNJ-54175446, a P2X7 Receptor Antagonist

Positron emission tomography (PET) provides useful information in target engagement or receptor occupancy in the brain for central nervous system (CNS) drug development, however, dose selection for human PET studies is challenging and largely empirical. Here, we describe a translational pharmacokinetic/pharmacodynamic (PK/PD) modeling work to inform dose selection for a human PET study of JNJ-54175446, a CNS-penetrating P2X7 receptor antagonist. Models were developed using data on monkey brain occupancy and plasma drug exposures from a monkey PET study and early human clinical studies that provided data on drug exposures and human ex vivo-stimulated peripheral interleukin (IL)-1β release. The observed plasma PK of JNJ-54175446 in human was adequately described by a one-compartment model with parallel zero-order and first-order absorption and first-order elimination. An exposure-occupancy model was extrapolated from monkey to human assuming a similar unbound potency (all other model parameters remained unchanged). This model was then used to simulate human brain occupancy to guide human PET study dose selection, together with the human population PK model. The corroboration of model predicted occupancy by the observed occupancy data from the human PET study supports the use of a monkey as a predictive model for human PET target engagement. Potency estimate for brain occupancy was generally comparable to that for the suppression of the provoked peripheral IL-1β release ex vivo, indicating that blood IL-1β release may be used as a surrogate of central occupancy for JNJ-54175446. Translational PK/PD modeling approach could be used for selecting optimal doses for human PET and other clinical studies.

Preclinical Evaluation and Nonhuman Primate Receptor Occupancy Study of 18F-JNJ-64413739, a PET Radioligand for P2X7 Receptors

The P2X7 receptor is an adenosine triphosphate-gated ion channel, which is abundantly expressed in glial cells within the central nervous system and in the periphery. P2X7 receptor activation leads to the release of the proinflammatory cytokine IL-1β in the brain, and antagonism of the P2X7 receptor is a novel therapeutic strategy to dampen adenosine triphosphate-dependent IL-1β signaling. PET ligands for the P2X7 receptor will not only be valuable to assess central target engagement of drug candidates but also hold promise as surrogate markers of central neuroinflammation. Herein we describe the in vitro and in vivo evaluation of 18F-JNJ-64413739, an 18F-labeled PET ligand for imaging the P2X7 receptor in the brain. Methods: P2X7 receptor affinity and specificity, pharmacokinetics, metabolic stability, blood-brain barrier permeability, and off-target binding of JNJ-64413739 were evaluated in a series of in vitro, ex vivo, and in vivo assays. 18F-JNJ-64413739 was radiolabeled via a one-step nucleophilic aromatic substitution. The tracer was also studied in rhesus macaques, and PET images were analyzed with an arterial plasma input function-based Logan graphical analysis. Results: The potency (half-maximal inhibitory concentration) of the P2X7 receptor antagonist JNJ-64413739 is 1.0 ± 0.2 nM and 2.0 ± 0.6 nM at the recombinant human and rat P2X7 receptor, respectively, and the binding affinity is 2.7 nM (rat cortex binding assay) and 15.9 nM (human P2X7 receptor). In nonhuman primate PET imaging studies, dose-dependent receptor occupancy of JNJ-54175446 was observed in 2 rhesus monkeys. At a 0.1 mg/kg dose (intravenous) of JNJ-54175446, the receptor occupancy was calculated to be 17% by Logan graphical analysis, whereas a dose of 2.5 mg/kg yielded a receptor occupancy of 60%. Conclusion: The preclinical evaluation of 18F-JNJ-64413739 demonstrates that the tracer engages the P2X7 receptor. Reproducible and dose-dependent receptor occupancy studies with the P2X7 receptor antagonist JNJ-54175446 were obtained in rhesus monkeys. This novel PET tracer exhibits in vitro and in vivo characteristics suitable for imaging the P2X7 receptor in the brain and warrants further studies in humans.