Home>>Signaling Pathways>> Neuroscience>> Neurokinin Receptor>>Ibodutant (MEN 15596)

Ibodutant (MEN 15596) Sale

(Synonyms: MEN 15596) 目录号 : GC31199

Ibodutant (MEN 15596) (MEN 15596) 是一种有效的选择性速激肽 NK2 受体拮抗剂,pKi 为 10.1。

Ibodutant (MEN 15596) Chemical Structure

Cas No.:522664-63-7

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Ibodutant (MEN 15596) is a potent and selective tachykinin NK2 receptor antagonist with a pKi of 10.1.

[1]. Cialdai C, et al. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist. Eur J Pharmacol. 2006 Nov 7;549(1-3):140-8.

Chemical Properties

Cas No. 522664-63-7 SDF
别名 MEN 15596
Canonical SMILES CC1=CC2=C(C=C(C(NC3(CCCC3)C(N[C@@]([H])(C(NCC4CCN(CC5CCOCC5)CC4)=O)CC6=CC=CC=C6)=O)=O)S2)C=C1
分子式 C37H48N4O4S 分子量 644.87
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5507 mL 7.7535 mL 15.507 mL
5 mM 0.3101 mL 1.5507 mL 3.1014 mL
10 mM 0.1551 mL 0.7754 mL 1.5507 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Peristalsis and propulsion of colonic content can occur after blockade of major neuroneuronal and neuromuscular transmitters in isolated guinea pig colon

We recently identified hexamethonium-resistant peristalsis in the guinea pig colon. We showed that, following acute blockade of nicotinic receptors, peristalsis recovers, leading to normal propagation velocities of fecal pellets along the colon. This raises the fundamental question: what mechanisms underlie hexamethonium-resistant peristalsis? We investigated whether blockade of the major receptors that underlie excitatory neuromuscular transmission is required for hexamethonium-resistant peristalsis. Video imaging of colonic wall movements was used to make spatiotemporal maps and determine the velocity of peristalsis. Propagation of artificial fecal pellets in the guinea pig distal colon was studied in hexamethonium, atropine, ω-conotoxin (GVIA), ibodutant (MEN-15596), and TTX. Hexamethonium and ibodutant alone did not retard peristalsis. In contrast, ω-conotoxin abolished peristalsis in some preparations and reduced the velocity of propagation in all remaining specimens. Peristalsis could still occur in some animals in the presence of hexamethonium + atropine + ibodutant + ω-conotoxin. Peristalsis never occurred in the presence of TTX. The major finding of the current study is the unexpected observation that peristalsis can occur after blockade of the major excitatory neuroneuronal and neuromuscular transmitters. Also, the colon retained an intrinsic polarity in the presence of these antagonists and was only able to expel pellets in an aboral direction. The nature of the mechanism(s)/neurotransmitter(s) that generate(s) peristalsis and facilitate(s) natural fecal pellet propulsion, after blockade of major excitatory neurotransmitters, at the neuroneuronal and neuromuscular junction remains to be identified.

Modulation on C- and N-terminal moieties of a series of potent and selective linear tachykinin NK(2) receptor antagonists

Herein we describe the synthesis of a series of new potent tachykinin NK(2) receptor antagonists by the modulation of the C- and N-terminal moieties of ibodutant (MEN 15596, 1). The N-terminal benzo[b]thiophene ring was replaced by different substituted naphthalenes and benzofurans, while further modifications were evaluated at the C-terminal tetrahydropyran moiety. Most compounds demonstrated a high affinity for the human NK(2) receptor and high in vitro antagonist potency, indicating that a wide range of substituents at both termini can be incorporated in the molecule without detrimental effects on the interactions with the NK(2) receptor. Selected compounds were tested in vivo confirming their activity as NK(2) antagonists. In particular, after both iv and id administration to guinea pig, compound 61 b was able to antagonize NK(2)-induced colonic contractions with a potency and duration-of-action fully comparable to the reference compound 1 (MEN 15596, ibodutant).

Multifaceted approach to determine the antagonist molecular mechanism and interaction of ibodutant ([1-(2-phenyl-1R-[[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl]-ethylcarbamoyl)-cyclopentyl]-amide) at the human tachykinin NK2 receptor

Ibodutant (MEN15596, [1-(2-phenyl-1R-[[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl]-ethylcarbamoyl)-cyclopentyl]-amide) is a tachykinin NK(2) receptor (NK(2)R) antagonist currently under phase II clinical trials for irritable bowel syndrome. This study focuses on the ibodutant pharmacodynamic profile at the human NK(2)R and compares it with two other antagonists, nepadutant (MEN11420, (cyclo-[[Asn(beta-D-GlcNAc)-Asp-Trp-Phe-Dpr-Leu]cyclo(2beta-5beta)]) and saredutant [SR48968, (S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide]. In functional experiments (phosphatidylinositol accumulation) in Chinese hamster ovary cells expressing the human NK(2)R, ibodutant potency measured toward concentration-response curves to neurokinin A as pK(B) was 10.6, and its antagonism mechanism was surmountable and competitive. In the same assay, antagonism equilibration and reversibility experiments of receptor blockade indicated that ibodutant quickly attains equilibrium and that reverts from receptor compartment in a slower manner. Kinetic properties of ibodutant were assessed through competitive binding kinetics experiments performed at [(3)H]nepadutant and [(3)H]saredutant binding sites. Determined K(on) and K(off) values indicated a fast association and slow dissociation rate of ibodutant at the different antagonist binding sites. Last, by radioligand binding experiments at some mutated human tachykinin NK(2)Rs, the amino acidic determinants crucial for the high affinity of ibodutant were identified at the transmembrane (TM) level: Cys167 in TM4; Ile202 and Tyr206 in TM5; Phe270, Tyr266, and Trp263 in TM6; and Tyr289 in TM7. These results indicated an extended antagonist binding pocket in the TM portion of the receptor, which is conceived crucial for TM3 and 6 arrangement and leads to G protein-coupled receptor activation. By combining this information and molecular modeling, the docking mode of ibodutant-human NK(2)R complex is proposed.