Home>>GS-443902

GS-443902 Sale

(Synonyms: 瑞德西韦代谢物; GS-441524 triphosphate; Remdesivir metabolite) 目录号 : GC39240

GS-443902 是一种有效的病毒 RNA 依赖的 RNA 聚合酶 (RdRp) 抑制剂,对 TP RdRp,RSV RdRp 和 HCV RdRp 的 IC50 分别为 5.6 µM,1.1 µM 和 5 µM。GS-443902 是 Remdesivir 的活性三磷酸盐代谢产物。

GS-443902 Chemical Structure

Cas No.:1355149-45-9

规格 价格 库存 购买数量
5mg
¥14,850.00
现货
10mg
¥24,750.00
现货
25mg
¥49,500.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GS-443902 (Remdesivir metabolite) is a potent viral RNA-dependent RNA-polymerases (RdRp) inhibitor with IC50s of 5.6 µM, 1.1 µM, 5 µM for TP RdRp, RSV RdRp and HCV RdRp, respectively. GS-443902 is the active triphosphate metabolite of Remdesivir[1][2].

[1]. Siegel D, et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. Med Chem. 2017 Mar 9;60(5):1648-1661. [2]. Cho A, et al. Synthesis and antiviral activity of a series of 1’-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett. 2012 Apr 15;22(8):2705-7. [3]. Warren TK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016 Mar 17;531(7594):381-5.

Chemical Properties

Cas No. 1355149-45-9 SDF
别名 瑞德西韦代谢物; GS-441524 triphosphate; Remdesivir metabolite
Canonical SMILES O=P(OP(O)(O)=O)(O)OP(OC[C@@H](O1)[C@@H](O)[C@@H](O)[C@]1(C#N)C2=CC=C3N2N=CN=C3N)(O)=O
分子式 C12H16N5O13P3 分子量 531.2
溶解度 Water: 100 mg/mL (188.25 mM) 储存条件 Store at -20°C,unstable in solution, ready to use.
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8825 mL 9.4127 mL 18.8253 mL
5 mM 0.3765 mL 1.8825 mL 3.7651 mL
10 mM 0.1883 mL 0.9413 mL 1.8825 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of Remdesivir, a SARS-CoV-2 Replication Inhibitor

Clin Pharmacokinet 2021 May;60(5):569-583.PMID:33782830DOI:10.1007/s40262-021-00984-5.

Remdesivir (RDV, Veklury®) is a once-daily, nucleoside ribonucleic acid polymerase inhibitor of severe acute respiratory syndrome coronavirus 2 replication. Remdesivir has been granted approvals in several countries for use in adults and children hospitalized with severe coronavirus disease 2019 (COVID-19). Inside the cell, remdesivir undergoes metabolic activation to form the intracellular active triphosphate metabolite, GS-443902 (detected in peripheral blood mononuclear cells), and ultimately, the renally eliminated plasma metabolite GS-441524. This review discusses the pre-clinical pharmacology of RDV, clinical pharmacokinetics, pharmacodynamics/concentration-QT analysis, rationale for dose selection for treatment of patients with COVID-19, and drug-drug interaction potential based on available in vitro and clinical data in healthy volunteers. Following single-dose intravenous administration over 2 h of an RDV solution formulation across the dose range of 3-225 mg in healthy participants, RDV and its metabolites (GS-704277and GS-441524) exhibit linear pharmacokinetics. Following multiple doses of RDV 150 mg once daily for 7 or 14 days, major metabolite GS-441524 accumulates approximately 1.9-fold in plasma. Based on pharmacokinetic bridging from animal data and available human data in healthy volunteers, the RDV clinical dose regimen of a 200-mg loading dose on day 1 followed by 100-mg maintenance doses for 4 or 9 days was selected for further evaluation of pharmacokinetics and safety. Results showed high intracellular concentrations of GS-443902 suggestive of efficient conversion from RDV into the triphosphate form, and further supporting this clinical dosing regimen for the treatment of COVID-19. Mathematical drug-drug interaction liability predictions, based on in vitro and phase I data, suggest RDV has low potential for drug-drug interactions, as the impact of inducers or inhibitors on RDV disposition is minimized by the parenteral route of administration and extensive extraction. Using physiologically based pharmacokinetic modeling, RDV is not predicted to be a clinically significant inhibitor of drug-metabolizing enzymes or transporters in patients infected with COVID-19 at therapeutic RDV doses.

ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential

Pharmaceuticals (Basel) 2021 Jul 8;14(7):655.PMID:34358081DOI:10.3390/ph14070655.

On 11 March 2020, the World Health Organization (WHO) classified the Coronavirus Disease 2019 (COVID-19) as a global pandemic, which tested healthcare systems, administrations, and treatment ingenuity across the world. COVID-19 is caused by the novel beta coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the inception of the pandemic, treatment options have been either limited or ineffective. Remdesivir, a drug originally designed to be used for Ebola virus, has antiviral activity against SARS-CoV-2 and has been included in the COVID-19 treatment regimens. Remdesivir is an adenosine nucleotide analog prodrug that is metabolically activated to a nucleoside triphosphate metabolite (GS-443902). The active nucleoside triphosphate metabolite is incorporated into the SARS-CoV-2 RNA viral chains, preventing its replication. The lack of reported drug development and characterization studies with remdesivir in public domain has created a void where information on the absorption, distribution, metabolism, elimination (ADME) properties, pharmacokinetics (PK), or drug-drug interaction (DDI) is limited. By understanding these properties, clinicians can prevent subtherapeutic and supratherapeutic levels of remdesivir and thus avoid further complications in COVID-19 patients. Remdesivir is metabolized by both cytochrome P450 (CYP) and non-CYP enzymes such as carboxylesterases. In this narrative review, we have evaluated the currently available ADME, PK, and DDI information about remdesivir and have discussed the potential of DDIs between remdesivir and different COVID-19 drug regimens and agents used for comorbidities. Considering the nascent status of remdesivir in the therapeutic domain, extensive future work is needed to formulate safer COVID-19 treatment guidelines involving this medication.

Key Metabolic Enzymes Involved in Remdesivir Activation in Human Lung Cells

Antimicrob Agents Chemother 2021 Aug 17;65(9):e0060221.PMID:34125594DOI:10.1128/AAC.00602-21.

Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate MetX, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19 but also enable efficient intracellular metabolism of RDV and its MetX to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.

Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles

Chem Biol Interact 2021 Jul 1;343:109480.PMID:33887223DOI:10.1016/j.cbi.2021.109480.

Polyphenolics and 1,3,4-oxadiazoles are two of the most potent bioactive classes of compounds in medicinal chemistry, since both are known for their diverse pharmacological activities in humans. One of their prominent activities is the antimicrobial/antiviral activities, which are much apparent when the key functional structural moieties of both of them meet into the same compounds. The current COVID-19 pandemic motivated us to computationally screen and evaluate our library of previously-synthesized 2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles against the major SARS-CoV-2 protein targets. Interestingly, few ligands showed promising low binding free energies (potent inhibitory interactions/affinities) with the active sites of some coronaviral-2 enzymes, specially the RNA-dependent RNA polymerase (nCoV-RdRp). One of them was 5,5'-{5,5'-[(1R,2R)-1,2-dihydroxyethane-1,2-diyl]bis(1,3,4-oxadiazole-5,2-diyl)}dibenzene-1,2,3-triol (Taroxaz-104), which showed significantly low binding energies (-10.60 and -9.10 kcal/mol) with nCoV-RdRp-RNA and nCoV-RdRp alone, respectively. These binding energies are even considerably lower than those of remdesivir potent active metabolite GS-443902 (which showed -9.20 and -7.90 kcal/mol with the same targets, respectively). Further computational molecular investigation revealed that Taroxaz-104 molecule strongly inhibits one of the potential active sites of nCoV-RdRp (the one with which GS-443902 molecule mainly interacts), since it interacts with at least seven major active amino acid residues of its predicted pocket. The successful repurposing of Taroxaz-104 has been achieved after the promising results of the anti-COVID-19 biological assay were obtained, as the data showed that Taroxaz-104 exhibited very significant anti-COVID-19 activities (anti-SARS-CoV-2 EC50 = 0.42 μM) with interesting effectiveness against the new strains/variants of SARS-CoV-2. Further investigations for the development of Taroxaz-104 and its coming polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives as anti-COVID-19 drugs, through in vivo bioevaluations and clinical trials research, are urgently needed.

Whole Body PBPK Modeling of Remdesivir and Its Metabolites to Aid in Estimating Active Metabolite Exposure in the Lung and Liver in Patients With Organ Dysfunction

Clin Pharmacol Ther 2022 Mar;111(3):624-634.PMID:34656075DOI:10.1002/cpt.2445.

Remdesivir (RDV) is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of coronavirus disease 2019 (COVID-19) in certain patients requiring hospitalization. As a nucleoside analogue prodrug, RDV undergoes intracellular multistep activation to form its pharmacologically active species, GS-443902, which is not detectable in the plasma. A question arises that whether the observed plasma exposure of RDV and its metabolites would correlate with or be informative about the exposure of GS-443902 in tissues. A whole body physiologically-based pharmacokinetic (PBPK) modeling and simulation approach was utilized to elucidate the disposition mechanism of RDV and its metabolites in the lungs and liver and explore the relationship between plasma and tissue pharmacokinetics (PK) of RDV and its metabolites in healthy subjects. In addition, the potential alteration of plasma and tissue PK of RDV and its metabolites in patients with organ dysfunction was explored. Our simulation results indicated that intracellular exposure of GS-443902 was decreased in the liver and increased in the lungs in subjects with hepatic impairment relative to the subjects with normal liver function. In subjects with severe renal impairment, the exposure of GS-443902 in the liver was slightly increased, whereas the lung exposure of GS-443902 was not impacted. These predictions along with the organ impairment study results may be used to support decision making regarding the RDV dosage adjustment in these patient subgroups. The modeling exercise illustrated the potential of whole body PBPK modeling to aid in decision making for nucleotide analogue prodrugs, particularly when the active metabolite exposure in the target tissues is not available.