Home>>Signaling Pathways>> Others>> Others>>GLN-1062

GLN-1062 Sale

(Synonyms: GLN-1062) 目录号 : GC31007

GLN-1062 (Memogain) is an inactive pro-drug of galantamine, the latter being a plant alkaloid approved for the treatment of mild to moderate Alzheimer's disease.

GLN-1062 Chemical Structure

Cas No.:224169-27-1

规格 价格 库存 购买数量
1mg
¥794.00
现货
5mg
¥1,785.00
现货
10mg
¥2,700.00
现货
20mg
¥4,764.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GLN-1062 (Memogain) is an inactive pro-drug of galantamine, the latter being a plant alkaloid approved for the treatment of mild to moderate Alzheimer's disease.

[1] Maelicke A, et al. J Mol Neurosci. 2010 Jan;40(1-2):135-7.

Chemical Properties

Cas No. 224169-27-1 SDF
别名 GLN-1062
Canonical SMILES CN1CC[C@]23C4=C(O[C@@]2([H])C[C@@H](OC(C5=CC=CC=C5)=O)C=C3)C(OC)=CC=C4C1
分子式 C24H25NO4 分子量 391.46
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5545 mL 12.7727 mL 25.5454 mL
5 mM 0.5109 mL 2.5545 mL 5.1091 mL
10 mM 0.2555 mL 1.2773 mL 2.5545 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Safety, pharmacokinetics, and pharmacodynamics of Gln-1062, a prodrug of galantamine

Introduction: Gln-1062 (MEMOGAIN) is an intranasally administered lipophilic prodrug of galantamine. Based on high brain-to-blood concentrations observed in pre-clinical studies, Gln-1062 is expected to have superior cognitive efficacy compared to oral galantamine. Methods: Forty-eight healthy elderly subjects were randomized 12:4 to Gln-1062 (5.5, 11, or 22 mg, b.i.d., for 7 days) or placebo. Safety, tolerability, pharmacokinetics, and pharmacodynamics were assessed repeatedly. Pharmacokinetics were compared with 16 mg oral galantamine. Results: Gln-1062 up to 22 mg, b.i.d., was well tolerated. Gln-1062 plasma concentrations increased immediately following dosing (median Tmax of 0.5 hour [range 0.5-1.0]). Cmax and AUC0-last increased in a dose-linear manner over all three dose levels. Gln-1062 was rapidly cleaved into galantamine. Gln-1062 significantly improved adaptive tracking (sustained attention) with 1.95% (95% confidence interval [CI] 0.630-3.279, P = 0.0055) compared to placebo after correction for individual baseline performance. Discussion: Gln-1062 was considered to be safe and caused fewer gastrointestinal side effects than oral galantamine. Gln-1062 behaved pharmacokinetically as expected and improved performance on cognitive tests.

Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer's disease

Ethnopharmacological relevance: Alzheimer's disease (AD), a deleterious neurodegenerative disorder that impairs memory, cognitive functions and may lead to dementia in late stage of life. The pathogenic cause of AD remains incompletely understood and FDA approved drugs are partial inhibitors rather than curative. Most of drugs are synthetic or natural products as galanthamine is an alkaloid obtained from Galanthus spp. Huperzine A, an alkaloid found in Huperzia spp., gingkolides a diterpenoids from Gingko biloba and many ethnobotanicals like Withania somnifera (L.) Dunal., Physostigma venenosum Balf., Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urb. have been used by traditional Indian, Chinese, and European system of medicines in AD. Clinical significance opioid alkaloid in Papaver somniferum has shown another dimension to this study. Over exploitation of medicinal plants with limited bioactive principles has provided templates to design synthetic drugs in AD e.g. rivastigmine, phenserine, eptastigmine based on chemical structure of physostigmine of Physostigma venenosum Balf. Even ZT-1 a prodrug of Hup A and memogain a prodrug of galantamine has achieved new direction in drug development in AD. All these first-line cholinesterase-inhibitors are used as symptomatic treatments in AD. Single modality of "One-molecule-one-target" strategy for treating AD has failed and so future therapies on "Combination-drugs-multi-targets" strategy (CDMT) will need to address multiple aspects to block the progression of pathogenesis of AD. Besides, cholinergic and amyloid drugs, in this article we summarize proteinopathy-based drugs as AD therapeutics from a variety of biological sources. In this review, an attempt has been made to elucidate the molecular mode of action of various plant products, and synthetic drugs investigated in various preclinical and clinical tests in AD. It also discusses current attempts to formulate a comprehensive CDMT strategy to counter complex pathogenesis in AD.
Materials and methods: Information were collected from classical books on medicinal plants, pharmacopoeias and scientific databases like PubMed, Scopus, GoogleScholar, Web of Science and electronic searches were performed using Cochrane Library, Medline and EMBASE. Also published scientific literatures from Elsevier, Taylor and Francis, Springer, ACS, Wiley publishers and reports by government bodies and documentations were assessed.
Results: 60 no. of natural and synthetic drugs have been studied with their significant bioactivities. A decision matrix designed for evaluation of drugs for considering to the hypothetic "CDMT" strategy in AD. We have introduced the scoring pattern of individual drugs and based on scoring pattern, drugs that fall within the scoring range of 18-25 are considered in the proposed CDMT. It also highlights the importance of available natural products and in future those drugs may be considered in CDMT along with the qualified synthetic drugs.
Conclusion: A successful validation of the CDMT strategy may open up a debate on health care reform to explore other possibilities of combination therapy. In doing so, it should focus on clinical and molecular relationships between AD and CDMT. A better understanding of these relationships could inform and impact future development of AD-directed treatment strategies. This strategy also involves in reducing costs in treatment phases which will be affordable to a common man suffering from AD.

First in human study with a prodrug of galantamine: Improved benefit-risk ratio?

Introduction: Gln-1062 (Memogain) is a pharmacologically inactive prodrug of galantamine. Owing to its lipophilic nature, it preferentially enters the brain, where it is cleaved into active galantamine. Gln-1062 is expected to have fewer peripheral side effects than other cholinesterase inhibitors, with improved effectiveness.
Methods: This was a double-blind, comparator and placebo-controlled, sequential cohort, single ascending dose study in 58 healthy subjects with Gln-1062 in doses of 5.5, 11, 22, 33, and 44 mg, compared with oral galantamine 16 mg and donepezil 10 mg. Safety, tolerability, pharmacokinetics, and pharmacodynamics were assessed.
Results: Gln-1062 doses up to 33 mg were well tolerated and induced a dose-dependent increase in the plasma concentrations of Gln-1062 and galantamine. Gln-1062 had a dose-dependent positive effect on verbal memory and attention, mainly in the first hours after drug administration.
Discussion: Gln-1062 was better tolerated than galantamine in doses with the same molarity and led to improved effects in cognitive tests. This is most likely caused by the more favorable distribution ratio between peripheral and central cholinesterase inhibition. These results give reason for further exploration of this compound.

Memogain is a galantamine pro-drug having dramatically reduced adverse effects and enhanced efficacy

Memogain (Gln-1062) is an inactive pro-drug of galantamine, the latter being a plant alkaloid approved for the treatment of mild to moderate Alzheimer's disease. Memogain has more than 15-fold higher bioavailability in the brain than the same doses of galantamine. In the brain, Memogain is enzymatically cleaved to galantamine, thereby regaining its pharmacological activity as a cholinergic enhancer. In animal models of drug-induced amnesia, Memogain produced several fold larger cognitive improvement than the same doses of galantamine, without exhibiting any significant levels of gastrointestinal side effects that are typical for the unmodified drug and other inhibitors of cholinesterases, such as donepezil and rivastigmin. In the ferret, dramatically reduced emetic and behavioral responses were observed when Memogain was administered instead of galantamine. Based on these and other preclinical data, Memogain may represent an advantageous drug treatment for Alzheimer's disease, combining much lesser gastrointestinal side effects and considerably higher potency in enhancing cognition, as compared to presently available drugs.

Nasal Application of the Galantamine Pro-drug Memogain Slows Down Plaque Deposition and Ameliorates Behavior in 5X Familial Alzheimer's Disease Mice

The plant alkaloid galantamine is an established symptomatic drug treatment for Alzheimer's disease (AD), providing cognitive and global relief in human patients. However, as an acetylcholinesterase inhibitor, gastrointestinal side effects limit the dosage and duration of treatment. Memogain (Gln-1062), a pro-drug, liberates galantamine on cleavage by a carboxyesterase in the brain. The possibility to deliver Memogain intranasally may further circumvent side effects, allowing higher dosing compared to galantamine. In this study, the 5X Familial Alzheimer's Disease (5XFAD) mouse model was used to investigate the effect of chronic Memogain treatment on behavior and amyloid-β (Aβ) plaque deposition in the brain. Chronic intranasal dosage of 6 mg/kg body weight twice daily was tolerated well, whereas the double dose caused body weight loss in males and was less effective in some behavioral tests. 8 weeks of chronic treatment resulted in improved performance in behavioral tests, such as open field and light-dark avoidance, and in fear conditioning already at mildly affected stages at the age of 18 weeks compared to untreated controls. Furthermore, after treatment a significantly lower plaque density in the brain, i.e., in the entorhinal cortex (reduction 20% females, 40% males) and the hippocampus (19% females, 31% males) at the age of 18 weeks was observed. These results show that nasal application of Memogain effectively delivers the drug to the brain with the potential to retard plaque deposition and improve behavioral symptoms in AD similar to the approved galantamine.