Home>>Signaling Pathways>> Others>> Others>>Dooku1

Dooku1 Sale

(Synonyms: 2-((2,6-二氯苄基)硫基)-5-(1H-吡咯-2-基)-1,3,4-恶二唑) 目录号 : GC38553

Dooku1 is an analog of Yoda1 with antagonist activity against mechanosensitive Piezo1 channel. Dooku1 inhibits 2 μM Yoda1-induced Ca2+-entry with IC50 of 1.3 μM in HEK 293 cells and 1.5 μM in HUVECs, respectively.

Dooku1 Chemical Structure

Cas No.:2253744-54-4

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥990.00
现货
1mg
¥300.00
现货
5mg
¥900.00
现货
10mg
¥1,440.00
现货
25mg
¥2,880.00
现货
50mg
¥5,310.00
现货
100mg
¥9,450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Dooku1 is an analog of Yoda1 with antagonist activity against mechanosensitive Piezo1 channel. Dooku1 inhibits 2 μM Yoda1-induced Ca2+-entry with IC50 of 1.3 μM in HEK 293 cells and 1.5 μM in HUVECs, respectively.

Dooku1 inhibits 2 μM Yoda1-induced Ca2+ -entry with IC50 s of 1.3 μM (HEK 293 cells) and 1.5 μM (HUVECs) yet failed to inhibit constitutive Piezo1 channel activity. Dooku1 has no effect on endogenous ATP-evoked Ca2+ elevation or store-operated Ca2+ entry in HEK 293 cells or Ca2+ entry through TRPV4 or TRPC4 channels overexpressed in CHO and HEK 293 cells.

[1] Elizabeth L Evans, et al. Br J Pharmacol. 2018 May;175(10):1744-1759.

Chemical Properties

Cas No. 2253744-54-4 SDF
别名 2-((2,6-二氯苄基)硫基)-5-(1H-吡咯-2-基)-1,3,4-恶二唑
Canonical SMILES ClC1=C(C(Cl)=CC=C1)CSC2=NN=C(C3=CC=CN3)O2
分子式 C13H9Cl2N3OS 分子量 326.2
溶解度 DMSO: 125 mg/mL (383.20 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.0656 mL 15.328 mL 30.656 mL
5 mM 0.6131 mL 3.0656 mL 6.1312 mL
10 mM 0.3066 mL 1.5328 mL 3.0656 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation

Br J Pharmacol 2018 May;175(10):1744-1759.PMID:29498036DOI:10.1111/bph.14188.

Background and purpose: The mechanosensitive Piezo1 channel has important roles in vascular physiology and disease. Yoda1 is a small-molecule agonist, but the pharmacology of these channels is otherwise limited. Experimental approach: Yoda1 analogues were generated by synthetic chemistry. Intracellular Ca2+ and Tl+ measurements were made in HEK 293 or CHO cell lines overexpressing channel subunits and in HUVECs, which natively express Piezo1. Isometric tension recordings were made from rings of mouse thoracic aorta. Key results: Modification of the pyrazine ring of Yoda1 yielded an analogue, which lacked agonist activity but reversibly antagonized Yoda1. The analogue is referred to as Dooku1. Dooku1 inhibited 2 μM Yoda1-induced Ca2+ -entry with IC50 s of 1.3 μM (HEK 293 cells) and 1.5 μM (HUVECs) yet failed to inhibit constitutive Piezo1 channel activity. It had no effect on endogenous ATP-evoked Ca2+ elevation or store-operated Ca2+ entry in HEK 293 cells or Ca2+ entry through TRPV4 or TRPC4 channels overexpressed in CHO and HEK 293 cells. Yoda1 caused dose-dependent relaxation of aortic rings, which was mediated by an endothelium- and NO-dependent mechanism and which was antagonized by Dooku1 and analogues of Dooku1. Conclusion and implications: Chemical antagonism of Yoda1-evoked Piezo1 channel activity is possible, and the existence of a specific chemical interaction site is suggested with distinct binding and efficacy domains.

Identification of Piezo1 channels in perivascular adipose tissue (PVAT) and their potential role in vascular function

Pharmacol Res 2022 Jan;175:105995.PMID:34818570DOI:10.1016/j.phrs.2021.105995.

The vasculature constantly experiences distension/pressure exerted by blood flow and responds to maintain homeostasis. We hypothesized that activation of the stretch sensitive, non-selective cation channel Piezo1 would directly increase vascular contraction in a way that might be modified by perivascular adipose tissue (PVAT). The presence and function of Piezo1 was investigated by RT-PCR, immunohistochemistry, and isolated tissue bath contractility. Superior and mesenteric resistance arteries, aortae, and their PVATs from male Sprague Dawley rats were used. Piezo1 mRNA was detected in aortic vessels, aortic PVAT, mesenteric vessels, and mesenteric PVAT. Both adipocytes and stromal vascular fraction of mesenteric PVAT expressed Piezo1 mRNA. In PVAT, expression of Piezo1 mRNA was greater in magnitude than that of Piezo2, transient receptor potential cation channel, subfamily V, member 4 (TRPV4), anoctamin 1, calcium activated chloride channel (TMEM16), and Pannexin1 (Panx1). Piezo1 protein was present in endothelium and PVAT of rat aortic and in PVAT of mesenteric artery. The Piezo1 agonists Yoda1 and Jedi2 (1 nM - 10 µM) did not stimulate aortic contraction [max < 10% phenylephrine (PE) 10 µM contraction] or relaxation in tissues + or -PVAT. Depolarizing the aorta by modestly elevated extracellular K+ did not unmask aortic contraction to Yoda1 (max <10% PE 10 µM contraction). Finally, the Piezo1 antagonist Dooku1 did not modify PE-induced aorta contraction + or -PVAT. Surprisingly, Dooku1 directly caused aortic contraction in the absence (Dooku1 =26 ± 11; Vehicle = 11 ± 11%PE contraction) but not in the presence of PVAT (Dooku1 = 2 ± 1; Vehicle = 8 ± 5% PE contraction). Thus, Piezo1 is present and functional in the isolated rat aorta but does not serve direct vascular contraction with or without PVAT. We reaffirmed the isolated mouse aorta relaxation to Yoda1, indicating a species difference in Piezo1 activity between mouse and rat.

Mechanosensitive Piezo1 channel in rat epididymal epithelial cells promotes transepithelial K+ secretion

Cell Calcium 2022 Jun;104:102571.PMID:35314382DOI:10.1016/j.ceca.2022.102571.

The Piezo1 channel, a mechanosensitive channel that exhibit a preference for Ca2+, play multifarious physiological and pathological roles in the endothelium and epithelium of various tissues. However, the functional expression of Piezo1 channel in the epithelium of the male reproductive tract remains unknown. In the present study, the expression of Piezo1 channel in the rat epididymis was determined by real-time quantitative PCR, western blot and immunohistochemical analysis. Our data revealed that Piezo1 channel was located in the epithelial layer of the rat epididymis, with higher expression levels in the corpus and cauda regions. The pro-secretion function of Piezo1 channel was then investigated using short circuit current (ISC) and intracellular Ca2+ imaging techniques. Application of Yoda1, a selective Piezo1 channel activator, stimulated a remarkable decrease in the ISC of the epididymal epithelium. Pharmacological experiments revealed that the ISC response induced by Piezo1 channel activation was abolished by pretreating epithelial cells with the Yoda1 analogue, Dooku1, the selective mechanosensitive cation channel blocker, GsMTx4, or removal of basolateral K+. Meanwhile, we demonstrated that activation of Piezo1 channel triggered a robust Ca2+ influx in epididymal epithelial cells. The possible involvement of Ca2+- activated K+channels (KCa) in transepithelial K+ secretion was then evaluated. And that big conductance KCa (BK), but not small conductance or intermediate conductance KCa, mediated Piezo1-elicited transepithelial K+ secretion. Moreover, we demonstrated that NKCC and NKA were responsible for supplying substrate K+ during transepithelial K+ secretion. These data demonstrate that the activation of Piezo1 channel promotes BK-mediated transepithelial K+ secretion, and thus may plays an important role in the formation of a high K+ concentration in epididymal intraluminal fluid.

Piezo1 suppression reduces demyelination after intracerebral hemorrhage

Neural Regen Res 2023 Aug;18(8):1750-1756.PMID:36751801DOI:10.4103/1673-5374.361531.

Piezo1 is a mechanically-gated calcium channel. Recent studies have shown that Piezo1, a mechanically-gated calcium channel, can attenuate both psychosine- and lipopolysaccharide-induced demyelination. Because oligodendrocyte damage and demyelination occur in intracerebral hemorrhage, in this study, we investigated the role of Piezo1 in intracerebral hemorrhage. We established a mouse model of cerebral hemorrhage by injecting autologous blood into the right basal ganglia and found that Piezo1 was largely expressed soon (within 48 hours) after intracerebral hemorrhage, primarily in oligodendrocytes. Intraperitoneal injection of Dooku1 to inhibit Piezo1 resulted in marked alleviation of brain edema, myelin sheath loss, and degeneration in injured tissue, a substantial reduction in oligodendrocyte apoptosis, and a significant improvement in neurological function. In addition, we found that Dooku1-mediated Piezo1 suppression reduced intracellular endoplasmic reticulum stress and cell apoptosis through the PERK-ATF4-CHOP and inositol-requiring enzyme 1 signaling pathway. These findings suggest that Piezo1 is a potential therapeutic target for intracerebral hemorrhage, as its suppression reduces intracellular endoplasmic reticulum stress and cell apoptosis and protects the myelin sheath, thereby improving neuronal function after intracerebral hemorrhage.

The mechanosensitive Piezo1 channels contribute to the arterial medial calcification

Front Physiol 2022 Nov 10;13:1037230.PMID:36439266DOI:10.3389/fphys.2022.1037230.

Vascular calcification (VC) is associated with a number of cardiovascular diseases, as well as chronic kidney disease. The role of smooth muscle cells (SMC) has already been widely explored in VC, as has the role of intracellular Ca2+ in regulating SMC function. Increased intracellular calcium concentration ([Ca2+]i) in vascular SMC has been proposed to stimulate VC. However, the contribution of the non-selective Piezo1 mechanosensitive cation channels to the elevation of [Ca2+]i, and consequently to the process of VC has never been examined. In this work the essential contribution of Piezo1 channels to arterial medial calcification is demonstrated. The presence of Piezo1 was proved on human aortic smooth muscle samples using immunohistochemistry. Quantitative PCR and Western blot analysis confirmed the expression of the channel on the human aortic smooth muscle cell line (HAoSMC). Functional measurements were done on HAoSMC under control and calcifying condition. Calcification was induced by supplementing the growth medium with inorganic phosphate (1.5 mmol/L, pH 7.4) and calcium (CaCl2, 0.6 mmol/L) for 7 days. Measurement of [Ca2+]i using fluorescent Fura-2 dye upon stimulation of Piezo1 channels (either by hypoosmolarity, or Yoda1) demonstrated significantly higher calcium transients in calcified as compared to control HAoSMCs. The expression of mechanosensitive Piezo1 channel is augmented in calcified arterial SMCs leading to a higher calcium influx upon stimulation. Activation of the channel by Yoda1 (10 μmol/L) enhanced calcification of HAoSMCs, while Dooku1, which antagonizes the effect of Yoda1, reduced this amplification. Application of Dooku1 alone inhibited the calcification. Knockdown of Piezo1 by siRNA suppressed the calcification evoked by Yoda1 under calcifying conditions. Our results demonstrate the pivotal role of Piezo1 channels in arterial medial calcification.