Home>>Natural Products>>Incensole

Incensole Sale

(Synonyms: 因香酚) 目录号 : GC38214

An inhibitor of IκBα degradation

Incensole Chemical Structure

Cas No.:22419-74-5

规格 价格 库存 购买数量
5mg
¥1,080.00
现货
10mg
¥1,800.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Incensole is a diterpene originally isolated from frankincense produced by B. carterii.1 It inhibits degradation of inhibitor of NF-κB (IκBα) in a concentration-dependent manner in TNF-α-stimulated HeLa cells when used at concentrations ranging from 60 to 140 μM.

1.Moussaieff, A., Shohami, E., Kashman, Y., et al.Incensole acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-κB activationMol. Pharmacol.72(6)1657-1664(2007)

Chemical Properties

Cas No. 22419-74-5 SDF
别名 因香酚
Canonical SMILES O[C@@H]1[C@@](O2)(C)CC[C@@]2(C(C)C)C/C=C(C)/CC/C=C(C)/CC1
分子式 C20H34O2 分子量 306.48
溶解度 DMF: 50 mg/ml,DMSO: 50 mg/ml,Ethanol: 50 mg/ml,Ethanol:PBS (pH 7.2)(1:2): 0.33 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.2629 mL 16.3143 mL 32.6286 mL
5 mM 0.6526 mL 3.2629 mL 6.5257 mL
10 mM 0.3263 mL 1.6314 mL 3.2629 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Distribution of the anti-inflammatory and anti-depressant compounds: Incensole and Incensole acetate in genus Boswellia

Phytochemistry 2019 May;161:28-40.PMID:30802641DOI:10.1016/j.phytochem.2019.01.007.

Incensole and its acetate have shown anti-inflammatory and anti-depression activities due to their ability to activate ion channels in the brain to alleviate anxiety or depression. The natural occurrence of these two structurally and medicinally fascinating 14-membered diterpenoids was reported mainly from the genus Boswellia. Incensole and Incensole acetate were detected in and isolated from both essential oils and resins of frankincense. One total synthesis was reported for Incensole. Both Incensole and its acetate served as precursors for several synthetic transformations. Given the fact that no specific enzymes were isolated from Boswellia trees, the major sources for Incensole and Incensole acetate, the biosynthetic pathway of these two compounds was only speculated. Recent studies on Incensole and Incensole acetate including ours have revealed another secret of the ancient drug. Understanding their mode of action will open a door in modern neurobiology and provides new insights on the mysterious diseases of the nervous system. This review interpretatively discusses the natural existence of Incensole and Incensole acetate, the variation of their percentages in different Boswellia species and other sources, their synthetic modifications, their biosynthesis and their therapeutic potential.

Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities

Semin Cancer Biol 2022 May;80:39-57.PMID:32027979DOI:10.1016/j.semcancer.2020.01.015.

The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-β boswellic acid, α- and β-boswellic acids, 11-keto-β-boswellic acid and other boswellic acids, lupeolic acids, Incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.

Incensole derivatives from frankincense: Isolation, enhancement, synthetic modification, and a plausible mechanism of their anti-depression activity

Bioorg Chem 2022 Sep;126:105900.PMID:35671644DOI:10.1016/j.bioorg.2022.105900.

Encouraged by the potent anti-depression activities of Incensole (1) and Incensole acetate (2) isolated from the resin of Boswellia papyrifera in our previous work, different derivatives of 1 and 2 were synthesized in the present study. The reaction of 1 with m-CPBA afforded the mono-epoxide derivative 3a, while the same reaction with 2 led to three different epoxide derivatives 3a, 3b, and 3c. Oxidation of 1 with PCC to get compound 3b, however along with the target 3b, the reaction gave three interesting side products (3c-3e). Oxime (3b-1) resulted from the reaction of 3b with hydroxylamine hydrochloride in pyridine, while epoxidation of 2 generate three epoxide products (4a-4c). The structures of all products were unambiguously confirmed using NMR and Mass spectrometry. Compounds 3a-e and 4a-c (0.1-3 mg/kg, i.p.) demonstrated promising anti-depression activities in classical mouse models of depression of FST and TST. The results showed that compounds 3a-e and 4a-c (0.1-3 mg/kg, i.p.) caused dose dependent reduction in immobility time compared to the vehicle control, with 3c-3e and 4b-4c demonstrating higher potency and efficacy. The findings of the open field test excluded the motor effects of these compounds, thus further confirming their anti-depression activity. Preliminary investigation into their mechanism of action using GABA antagonist, PTZ and molecular docking has predicted that compounds 3e and 4c bind at the GABA binding site of GABAA receptor to produce GABAergic effects. Furthermore, the promising anti-depression potency of compounds 1 and 2 and their derivatives make them lead compounds for drug discovery.

Incensole acetate prevents beta-amyloid-induced neurotoxicity in human olfactory bulb neural stem cells

Biomed Pharmacother 2018 Sep;105:813-823.PMID:29913410DOI:10.1016/j.biopha.2018.06.014.

β-Amyloid peptide (Aβ) is a potent neurotoxic protein associated with Alzheimer's disease (AD) which causes oxidative damage to neurons. Incensole acetate (IA) is a major constituent of Boswellia carterii resin, which has anti-inflammatory and protective properties against damage of a large verity of neural subtypes. However, this neuroprotective effect was not studied on human olfactory bulb neural stem cells (hOBNSCs). Herein, we evaluated this effect and studied the underlying mechanisms. Exposure to Aβ25-35 (5 and 10 μM for 24 h) inhibited proliferation (revealed by downregulation of Nestin and Sox2 gene expression), and induced differentiation (marked by increased expression of the immature neuronal marker Map2 and the astrocyte marker Gfap) of hOBNSCs. However, pre-treatment with IA (100 μM for 4 h) stimulated proliferation and differentiation of neuronal, rather than astrocyte, markers. Moreover, IA pretreatment significantly decreased the Aβ25-35-induced viability loss, apoptotic rate (revealed by decreased caspase 3 activity and protein expression, downregulated expression of Bax, caspase 8, cyto c, caspase3, and upregulated expression of Bcl2 mRNAs and proteins, in addition to elevated mitochondrial membrane potential and lowered intracellular Ca+2). IA reduced Aβ-mediated ROS production (revealed by decreased intracellular ROS and MDA level, and increased SOD, CAT, and GPX contents), and inhibited Aβ-induced inflammation (marked by down-regulated expression of IL1b, TNFa, NfKb, and Cox2 genes). IA also significantly upregulated mRNA and protein expression of Erk1/2 and Nrf2. Notably, IA increased the antioxidant enzyme heme oxygenase-1 (HO-1) expression and this effect was reversed by HO-1 inhibitor zinc protoporphyrin (ZnPP) leading to reduction of the neuroprotective effect of IA against Aβ-induced neurotoxicity. These findings clearly show the ability of IA to initiate proliferation and differentiation of neuronal progenitors in hOBNSCs and induce HO-1 expression, thereby protecting the hOBNSCs cells from Aβ25-35-induced oxidative cell death. Thus, IA may be applicable as a potential preventive agent for AD by its effect on hOBNSCs and could also be used as an adjuvant to hOBNSCs in cellular therapy of neurodegenerative diseases.

The Effects of Incensole Acetate on Neuro-inflammation, Brain-Derived Neurotrophic Factor and Memory Impairment Induced by Lipopolysaccharide in Rats

Neurochem Res 2021 Sep;46(9):2473-2484.PMID:34173963DOI:10.1007/s11064-021-03381-3.

Incensole acetate (IA) is a major component of Boswellia serrata resin that has been shown to have anti-inflammatory, anti-oxidant and neuroprotective properties. The present study determined the effect of IA on lipopolysaccharide (LPS)-induced memory impairment, and hippocampal cytokines and oxidative stress indicators level. We used 32 Wistar rats (220-250 g weight) randomly divided into four groups. The control group, which only received the saline-diluted DMSO (vehicle); LPS group which received LPS and was treated with the vehicle; and two IA-treated groups which received 2.5 or 5 mg/ kg IA before LPS injection. Morris water maze (MWM) and passive avoidance (PA) tests were performed. Finally, the brains were removed and were used to assess cytokines levels and oxidative stress status. Compared to the LPS group, IA administration reduced the time spent and path traveled to reach the hidden platform during 5 days of learning in MWM while increased the time spent in the target quadrant in the probe test. Moreover, IA increased latency while decreased entry number and time spent in the dark chamber of PA test compared to the LPS group. Additionally, pre-treatment with IA attenuated interleukin(IL)-6, tumor necrosis alpha (TNF-α), glial fibrillary acidic protein (GFAP), malondialdehyde (MDA) and nitric oxide (NO) metabolites levels while increased those of IL-10, total thiol, superoxide dismutase (SOD), catalase (CAT) and brain-derived neurotrophic factor (BDNF). Our results indicated that IA improved LPS-induced learning and memory impairments. The observed effects seem to be mediated via a protective activity against neuro-inflammation and brain tissue oxidative damage and through improving BDNF.