Home>>Natural Products>>Tenuifoliside B

Tenuifoliside B Sale

(Synonyms: 远志糖苷B) 目录号 : GC37762

Tenuifoliside B 是从Polygalae Radix 中分离出来的一种成分,能够抑制氰化钾 (KCN) 引起的缺氧和东莨菪碱引起的记忆障碍。Tenuifoliside B 具有潜在的认知改善和脑保护作用。Tenuifoliside B 有成为 AD 先导化合物的潜力。

Tenuifoliside B Chemical Structure

Cas No.:139726-36-6

规格 价格 库存 购买数量
1mg 待询 待询
5mg
¥3,024.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Tenuifoliside B, a component isolated from Polygalae Radix, inhibits potassium cyanide (KCN)-induced hypoxia and scopolamine-induced memory impairment. Tenuifoliside B shows potential cognitive improvement and cerebral protective effects. Tenuifoliside B has potential to become an anti-AD lead compound[1][2].

[1]. YongjiangWu, et al. Studies on the total synthesis of tenuifoliside B. Tetrahedron. 2017 Jun. [2]. Fumito KARAKIDA, et al. Cerebral Protective and Cognition-Improving Effects of Sinapic Acid in Rodents. Biol. Pharm. Bull. 30(3) 514-519 (2007).

Chemical Properties

Cas No. 139726-36-6 SDF
别名 远志糖苷B
Canonical SMILES OC[C@@]1([C@H]([C@H](O)[C@@H](CO)O1)OC(/C=C/C2=CC(OC)=C(O)C(OC)=C2)=O)O[C@H]3O[C@@H]([C@@H](O)[C@H](O)[C@H]3O)COC(C4=CC=C(O)C=C4)=O
分子式 C30H36O17 分子量 668.6
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4957 mL 7.4783 mL 14.9566 mL
5 mM 0.2991 mL 1.4957 mL 2.9913 mL
10 mM 0.1496 mL 0.7478 mL 1.4957 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

UPLC Quantitative Analysis of Multi-Components by Single Marker and Quality Evaluation of Polygala tenuifolia Wild. Extracts

Molecules 2017 Dec 20;22(12):2276.PMID:29261155DOI:10.3390/molecules22122276.

The quality control of Polygala tenuifolia Wild. is a major challenge in its clinical application. In this paper, a new strategy for the quality evaluation of P. tenuifolia extracts was verified through reverse-phase ultra-performance liquid chromatography (UPLC). The quantitative analysis of multi-components by a single marker (QAMS) was conducted with 3,6'-disinapoyl sucrose as an internal reference substance. Eight components (i.e., sibiricose A5, sibiricose A6, glomeratose A, tenuifoliside A, Tenuifoliside B, tenuifoliside C, sibiricaxanthone B, and polygalaxanthone III) were determined based on the relative correction factors. The concentrations of these components were also determined by applying a conventional external standard method. The cosine value confirmed the consistency of the two methods (cosine ratio value >0.999920). Hierarchical cluster analysis, radar plots, and discriminant analysis were performed to classify 23 batches of P. tenuifolia extracts from Shanxi, Hebei, and Shaanxi in China. Results revealed that QAMS combined with radar plots and multivariate data analysis could accurately measure and clearly distinguish the different quality samples of P. tenuifolia. Hence, QAMS is a feasible and promising method for the quality control of P. tenuifolia.

Bioactivity screening, extraction, and separation of lactate dehydrogenase inhibitors from Polygala tenuifolia Willd. based on a hyphenated strategy

J Sep Sci 2017 Mar;40(6):1385-1395.PMID:28134488DOI:10.1002/jssc.201601216.

Stroke is the second leading cause of death worldwide. Lactate dehydrogenase inhibitors are currently widely used in the treatment of ischemic stroke, and natural products are considered promising sources of lactate dehydrogenase inhibitors. In this study, ultrafiltration liquid chromatography coupled with mass spectrometry was used for the screening and identification of lactate dehydrogenase inhibitors from Polygala tenuifolia. Furthermore, five lactate dehydrogenase inhibitors, sibiricose A5, 3,6'-di-O-sinapoyl-sucrose, glomeratose A, Tenuifoliside B, and tenuifoliside C, were selected as target lactate dehydrogenase inhibitors. In addition, the five target compounds with purities of 96.45, 97.65, 96.38, 94.34, and 93.29% were extracted and isolated using a new hyphenated strategy of microwave-assisted extraction coupled with countercurrent chromatography with a two-phase solvent system of n-hexane/n-butanol/ethanol/water (5.321:1.00:1.664:6.647). The bioactivities of the isolated compounds were analyzed using PC12 cells and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results also demonstrated that microwave-assisted extraction coupled with countercurrent chromatography is an efficient method of isolating chemical constituents from medicinal herbs. Moreover, the research route consisting of activity screening, extraction, separation, and activity verification of the compounds has the advantages of being efficient, orientated, and objective.

Indirect identification of antioxidants in Polygalae Radix through their reaction with 2,2-diphenyl-1-picrylhydrazyl and subsequent HPLC-ESI-Q-TOF-MS/MS

Talanta 2015 Nov 1;144:830-5.PMID:26452897DOI:10.1016/j.talanta.2015.07.032.

A rapid and efficient method for the identification of antioxidants in the traditional Chinese medicine Polygalae Radix (PR) by HPLC-ESI-Q-TOF-MS/MS is described. The method is based on the hypothesis that upon reaction of antioxidants with 1,1-diphenyl-2-picrylhydrazyl (DPPH), the peak areas of compounds with potential antioxidant activities in the HPLC chromatogram will be significantly reduced in comparison to the untreated sample. The identity confirmation was achieved by Q-TOF-MS/MS technique. With this method, eight components were proposed possessing potent antioxidant activity. They were identified as sibiricose A5, sibiricose A6, sucrose monoester, polygalaxanthone III, Tenuifoliside B, 3',6-disinapoylsucrose (DISS), sucrose diester, tenuifoliside C, respectively. DISS was proposed to be the most potent one. The antioxidant activity of DISS was evaluated by DPPH, ABTS radical scavenging assay and ferric-reducing antioxidant power (FRAP) assay in vitro. Vitamin C (Vc) was used as positive control substance. DISS showed moderate DPPH (DISS's IC50 value was 1024.17 μg/mL, Vc's was 294.68 μg/mL) and ABTS (IC50 324.13 μg/mL, Vc's was 117.50 μg/mL) free radical scavenging capacity and ferric-reducing antioxidant power. DISS can be used as a new source of natural antioxidant in foods and cosmetics.

Cerebral protective and cognition-improving effects of sinapic acid in rodents

Biol Pharm Bull 2007 Mar;30(3):514-9.PMID:17329848DOI:10.1248/bpb.30.514.

We previously demonstrated that Tenuifoliside B and 3,6'-disinapoylsucrose in Polygalae Radix, the root of Polygala tenuifolia WILLDENOW, inhibited potassium cyanide (KCN)-induced hypoxia and scopolamine-induced memory impairment in mice. Because both ingredients have a common sinapoyl moiety in their structure, we inferred that the sinapoyl moiety could inhibit hypoxia and memory impairment. In the present study to clarify the hypothesis, sinapic acid inhibited KCN-induced hypoxia and scopolamine-induced memory impairment as well as Tenuifoliside B and 3,6'-disinapoylsucrose did. In addition, sinapic acid inhibited decompression- or bilateral carotid artery ligation-induced hypoxia (or mortality) and CO2-induced impairment in mice, and basal forebrain lesion-induced cerebral cholinergic dysfunction (decreases in acetylcholine concentration and choline acetyltransferase activity) in rats. These results, taken together, suggest the possibilities that sinapic acid is not only a very important moiety in the pharmacological activities of Tenuifoliside B and 3,6'-disinapoylsucrose but also a candidate for a cerebral protective and cognition-improving medicine.

Comparative Study on the Chemical Components and Gastrointestinal Function on Rats of the Raw Product and Licorice-Simmered Product of Polygala tenuifolia

Evid Based Complement Alternat Med 2021 Jan 7;2021:8855536.PMID:33505508DOI:10.1155/2021/8855536.

The root of Polygala tenuifolia Willd. (Polygalaceae) (PT) has been listed as a nootropic, anti-inflammatory, and antipsychotic medicine that can cure insomnia. Raw PT (RPT) is toxic and must be processed before clinical use. Licorice-simmered PT (LPT) is one of the most common processed products. We conducted this study in order to investigate the differences in chemical components and gastrointestinal function between RPT and LPT. We used principal component analysis (PCA) and quantitative analysis to study the differences in the chemical components. Animal experiments were conducted to evaluate the effects of PT on the gastrointestinal function of rats before and after simmering. Pathological sections of gastrointestinal tissues, serum hormone levels, and inflammatory cytokines were observed. The PCA results demonstrated that obvious separation was achieved between the RPT and LPT samples. Tenuifoliside B (TFSB), 3,6'-disinapoyl sucrose (DSS), tenuifoliose A (TFOA), tenuifoliose H (TFOH), onjisaponin B (OJB), onjisaponin Z (OJZ), and total saponins levels were decreased after licorice processing, while glomeratose A (GA) and 3,4,5-trimethoxycinnamic acid (TMCA) levels were markedly increased. Compared to the control group, the RPT groups exhibited dramatically lower levels of gastrin (GAS), motilin (MTL), and substance P (SP) and markedly higher levels of vasoactive intestinal peptide (VIP) and somatostatin (SS), but the LPT groups exhibited no significant differences in the above indexes. The levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in gastrointestinal tissue were markedly increased in the low RPT (L-RPT), high RPT (H-RPT), and H-LPT groups, showing a certain inflammatory effect, but the inflammatory effect in the L-LPT group was relatively weak. Licorice simmering can effectively reduce the inhibitory effect of RPT on gastrointestinal function in rats and reduce damage to gastrointestinal tissue. This study provides a scientific basis for research on the processing mechanism and clinical application of PT.