Home>>Natural Products>>Neoisoliquiritin

Neoisoliquiritin Sale

(Synonyms: 新异甘草苷) 目录号 : GC36719

Neoisoliquiritin 是一种从甘草中提取的活性物质。

Neoisoliquiritin Chemical Structure

Cas No.:59122-93-9

规格 价格 库存 购买数量
1mg
¥630.00
现货
5mg
¥1,602.00
现货
10mg
¥2,385.00
现货
25mg
¥4,185.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1].

[1]. Wayne C.Liao, et al. Identification of two licorice species, Glycyrrhiza uralensis and Glycyrrhiza glabra, based on separation and identification of their bioactive components. Food Chemistry. 2012 Jun, 132(4):2188-2193.

Chemical Properties

Cas No. 59122-93-9 SDF
别名 新异甘草苷
Canonical SMILES O=C(C1=CC=C(O[C@H]2[C@@H]([C@H]([C@@H]([C@@H](CO)O2)O)O)O)C=C1O)/C=C/C3=CC=C(O)C=C3
分子式 C21H22O9 分子量 418.39
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3901 mL 11.9506 mL 23.9011 mL
5 mM 0.478 mL 2.3901 mL 4.7802 mL
10 mM 0.239 mL 1.1951 mL 2.3901 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity

Phytomedicine 2021 May;85:153514.PMID:33676083DOI:10.1016/j.phymed.2021.153514.

Background: Prostate cancer (PCa) is a major cause of morbidity and mortality in men in both developed and developing countries. Androgens and the androgen receptor (AR) play predominant roles in the progression of PCa. Neoisoliquiritin (NEO) belongs to the class of licorice (Glycyrrhiza) flavonoids, which have a variety of biological activities including anti-depressant, anti-tumor-promoting, and anti-inflammation properties. Licorice root has cancer chemopreventive effects and has been given to PCa patients as an ingredient of PC-SPES, a commercially available combination of eight herbs. Therefore, we determined if NEO can suppress the proliferation of PCa cells. Purpose: We investigated whether and how NEO exerts its anti-neoplastic activity against PCa. Methods: The Cell Counting Kit 8 and flow cytometry were used to evaluate the effects of NEO on the proliferation and cell cycle progression of AR-dependent (LNCaP) and AR-independent (PC3) PCa cells. RNA sequencing was employed to examine the genome-wide changes in responsiveness to NEO in LNCaP cells. Quantitative PCR, Western blotting, docking, chromatin immunoprecipitation, and dual-luciferase reporter assays were conducted to determine the mechanism of action of NEO and its potential cross-talk with AR. A LNCaP xenograft nude mouse model was used to determine the inhibitory effects of NEO on AR-dependent PCa tumors in vivo. Results: NEO inhibited LNCaP cell proliferation in vitro by inducing G0/G1 phase cell cycle arrest. Conversely, NEO treatment had no effect on PC3 cells. Transcriptomic analysis indicated that AR signaling might be the key target of NEO in preventing PCa. NEO regulated AR-mediated cell growth suppression and AR-sensitized cell cycle arrest in LNCaP cells. NEO also blocked several key steps in the AR signaling pathway, including proposed targeting to the ligand binding pocket of AR by computer modeling, modulating AR-androgen response element DNA-binding activity, inhibiting the expression and transcriptional activity of AR, and suppressing downstream AR signaling. Conclusions: NEO negatively regulates AR expression and activity, thus supporting the tumor suppressive role for NEO in AR-dependent PCa.

Spectrum-Effect Relationships of Flavonoids in Glycyrrhiza uralensis Fisch

J Anal Methods Chem 2020 Dec 3;2020:8838290.PMID:33343964DOI:10.1155/2020/8838290.

Glycyrrhiza uralensis Fisch. is used in large quantities in traditional Chinese medicine. It contains flavonoids, saponins, and polysaccharides, with flavonoids being the main active ingredients. In this study, flavonoids were isolated from the roots of Glycyrrhiza uralensis Fisch. grown in 21 areas in China by water extraction, alcohol precipitation, polyamide resin separation, and other methods. Fingerprints were established by high performance liquid chromatography (HPLC). There were 15 common peaks in the fingerprints by similarity evaluations of the chromatographic fingerprints. The spectrum-effect relationships between the HPLC fingerprints and pharmacological activities of flavonoids in G. uralensis Fisch., including the heat clearing, detoxifying effects, cough relief, and phlegm elimination effects, were assessed by gray relational analysis and partial least squares regression. After HPLC-quadrupole time-of-flight mass spectrometry and standard comparison, these five identified compounds (liquiritin apioside, Neoisoliquiritin, licochalcone A, licochalcone B, and licochalcone C) could be used to evaluate licorice quality with regard to its efficacy. This research provides a scientific basis for improving licorice quality and also establishes a model for modernization of traditional Chinese medicines.

The application of HPLC-MS/MS to studies of pharmacokinetics and interconversion of isoliquiritigenin and neoisoliquiritigenin in rats

Biomed Chromatogr 2016 Jul;30(7):1155-1161.PMID:26577957DOI:10.1002/bmc.3655.

A specific and sensitive HPLC-MS/MS method was developed and validated for the simultaneously quantification of isoliquiritigenin (ISL) and Neoisoliquiritin (NIS) in rat plasma by oral administration. Analytes were analyzed on an Agilent 6460 LC-MS/MS system (Agilent, USA) using an Agilent Zorbax SB-C18 column (4.6 × 150 mm, 5 μm). Gradient elution was applied for the analyte separation using a mobile phase composed of 0.1% formic acid aqueous solution and methanol at a flow rate of 1.0 mL/min with a total running time of 12 min. The calibration curves for ISL and NIS showed good linearity in the concentrations ranging from 0.001 to 4.000 μg/mL with correlation coefficients >0.998. The precision, accuracy, recovery and stability were deemed acceptable. The method was applied to the pharmacokinetics study of ISL and NIS in rats by single and combination administration. The result showed that Cmax and AUC0→t of ISL were markedly increased from 0.53 to 1.20 μg/mL, and from 69.63 to 200.74 min μg/mL by combination administration. The mean t1/2 value was also prolonged from 64.55 to 203.74 min in the combination group. These results indicated that NIS may have been metabolized to ISL which increased the absorption and extended the elimination of ISL. However, little difference was found for NIS pharmacokinetics parameters between single NIS and the combination group, which suggested that there was no significant biotransformation of ISL to NIS. Copyright © 2015 John Wiley & Sons, Ltd.

The effect of ethanol extract of Glycyrrhiza uralensis on the voltage-gated sodium channel subtype 1.4

J Pharmacol Sci 2018 Feb;136(2):57-65.PMID:29433959DOI:10.1016/j.jphs.2017.11.008.

To investigate the inhibitory effect of Glycyrrhiza uralensis (G. uralensis) and its monomeric compounds on Nav1.4 voltage-gated sodium channels (VGSCs) and analyze the relationship between the content of its marker compounds and the inhibitory rate. Based on this study, we found that 4 mg/ml ethanol extract of G. uralensis at 30%, 50%, 70% and 90% (v/v) exhibited 77.00 ± 0.03%, 34.75 ± 0.09%, 100.00 ± 0.01% and 2.00 ± 0.01% inhibitory rates on INav1.4 respectively, and 8 mg/ml ethanol extract of G. uralensis at 30%, 50%, 70% and 90% (v/v) exhibited 99.00 ± 0.01%, 97.10 ± 0.02%, 100.00 ± 0.01% and 17.00 ± 0.04% inhibitory rates on INav1.4 respectively. Isoliquiritigenin, echinatin, liquiritin and glycyrrhizic acid exhibited higher inhibitory rates of 39.98 ± 4.55%, 33.20 ± 1.61%, 22.62 ± 0.30% and 20.54 ± 4.82% respectively. However, liquiritigenin, formononetin, Neoisoliquiritin and glycyrrhetinic acid exhibited lower inhibitory rates of less than 20%. Further, liquiritin apioside, isoliquiritin and neoliquiritin exhibited almost no effect on INav1.4. These findings showed that glycyrrhizic acid reached a maximum concentration of 49.15 μg/ml, while echinatin had the lowest concentration. The ethanol extract of G. uralensis has significant inhibitory effects on Nav1.4 VGSCs. This may be an important mechanism in the treatment of gastrocnemius spasm and could guide further research regarding material basis and mechanism of the treatment of gastrocnemius spasm with peony and licorice decoction.

Combination of the advantages of chromatographic methods based on active components for the quality evaluation of licorice

J Sep Sci 2015 Dec;38(24):4180-6.PMID:26472171DOI:10.1002/jssc.201500770.

A rapid, improved and comprehensive method including high-performance thin-layer chromatography, fingerprint technology and single standard to determine multiple components was developed and validated for the quality evaluation of licorice. In this study, a newly developed high-performance thin-layer chromatography method was first used for authentication of licorice, which achieved simultaneous identification of multiple bands including five bands for known bioactive components by comparing their retention factor values and colors with the standards. For fingerprint analysis, 8 of 16 common peaks were identified. Simultaneously, similarity analysis which showed very similar patterns and hierarchical clustering analysis were performed to discriminate and classify the 27 batches of samples. Additionally, the single standard to determine multiple components method was first successfully achieved to quantify the eight important active markers in licorice including liquiritin apioside, liquiritin, isoliquiritin apioside, isoliquritin, Neoisoliquiritin, liquiritigenin, isoliquiritigenin and glycyrrhizic acid. The easily available glycyrrhizic acid was selected as the reference substance to calculate relative response factors. Compared with the normal external standard method, this alternative method can be used to determine the multiple indices effectively and accurately. The validation result showed that the developed method was specific, accurate, precise, robust and reliable for the overall quality assessment of licorice.