Home>>Natural Products>>Methylophiopogonone A

Methylophiopogonone A Sale

(Synonyms: 甲基麦冬高黄酮A) 目录号 : GC36600

Methylophiopogonone A 是从Ophiopogon japonicas 根部分离得到的一种异黄酮,具有抗炎活性。

Methylophiopogonone A Chemical Structure

Cas No.:74805-90-6

规格 价格 库存 购买数量
1mg 待询 待询
5mg
¥5,139.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Methylophiopogonone A, a homoisoflavonoid isolated from the tuberous roots of Ophiopogon japonicas, shows anti-inflammatory activity[1].

[1]. Li N, et al. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus. Fitoterapia. 2012 Sep;83(6):1042-5.

Chemical Properties

Cas No. 74805-90-6 SDF
别名 甲基麦冬高黄酮A
Canonical SMILES O=C1C(CC2=CC=C(OCO3)C3=C2)=COC4=C(C)C(O)=C(C)C(O)=C14
分子式 C19H16O6 分子量 340.33
溶解度 Soluble in DMSO 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.9383 mL 14.6916 mL 29.3832 mL
5 mM 0.5877 mL 2.9383 mL 5.8766 mL
10 mM 0.2938 mL 1.4692 mL 2.9383 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis

Biochem Biophys Rep 2021 Jul;26:100969.PMID:33681482DOI:10.1016/j.bbrep.2021.100969.

Docking analysis of propolis's natural compound was successfully performed against SARS-CoV-2 main protease (Mpro) and spike protein subunit 2 (S2). Initially, the propolis's protein was screened using chromatography analysis and successfully identified 22 compounds in the propolis. Four compounds were further investigated, i.e., neoblavaisoflavone, Methylophiopogonone A, 3'-Methoxydaidzin, and genistin. The binding affinity of 3'-Methoxydaidzin was -7.7 kcal/mol, which is similar to nelfinavir (control), while the others were -7.6 kcal/mol. However, we found the key residue of Glu A:166 in the Methylophiopogonone A and genistin, even though the predicted binding energy slightly higher than nelfinavir. In contrast, the predicted binding affinity of neoblavaisoflavone, Methylophiopogonone A, 3'-Methoxydaidzin, and genistin against S2 were -8.1, -8.2, -8.3, and -8.3 kcal/mol, respectively, which is far below of the control (pravastatin, -7.3 kcal/mol). Instead of conventional hydrogen bonding, the π bonding influenced the binding affinity against S2. The results reveal that this is the first report about Methylophiopogonone A, 3'-Methoxydaidzin, and genistin as candidates for anti-viral agents. Those compounds can then be further explored and used as a parent backbone molecule to develop a new supplementation for preventing SARS-CoV-2 infections during COVID-19 outbreaks.

Active Ingredients and Action Mechanisms of Yi Guan Jian Decoction in Chronic Hepatitis B Patients with Liver Fibrosis

Evid Based Complement Alternat Med 2019 Sep 3;2019:2408126.PMID:31565062DOI:10.1155/2019/2408126.

Background and aim: The progression of liver fibrosis in chronic hepatitis B (CHB) patients is currently insufficiently controlled worldwide. The Yi Guan Jian decoction (YGJD) has been widely used in the treatment of liver fibrosis in CHB cases. Although animal studies have reported the antifibrotic effects of the decoction, the active ingredients of the YGJD remain unknown. This study aimed at identifying the potential active ingredients and exploring the mechanisms of action (MOA) of the decoction when treating CHB patients with fibrosis. Methods: Using data mining techniques and a structural clustering analysis, the potential active ingredients were determined. A network analysis of the differentially expressed genes was conducted to identify the potential targets. Selected compounds were docked to the potential targets for the compound-target interaction simulation. In vitro validation, including a cell proliferation assay and Western blot analysis, was conducted to evaluate the prediction results. Results: In the microarray data, 224 differentially expressed genes related to liver fibrosis were considered to be potential targets. Thirty active ingredients of the YGJD and 15 main targets and relevant pathways were identified. Among them, two active ingredients, Methylophiopogonone A and 8-geranyloxypsoralen, were validated as exhibiting antifibrotic effects on hepatic stellate cells. Conclusions: We identified the potential active ingredients of the YGJD and proposed the possible explanation for the MOA in the treatment of CHB patients with liver fibrosis. Moreover, this study provides a methodological reference for the systematic investigation of the bioactive compounds and related MOA of a traditional Chinese medicine formula in a clinical context.

Comparison of Ophiopogon japonicus and Liriope spicata var. prolifera from Different Origins Based on Multi-Component Quantification and Anticancer Activity

Molecules 2023 Jan 20;28(3):1045.PMID:36770712DOI:10.3390/molecules28031045.

The tuberous root of Ophiopogon japonicus (Thunb.) Ker-Gawl. is a well-known Chinese medicine also called Maidong (MD) in Chinese. It could be divided into "Chuanmaidong" (CMD) and "Zhemaidong" (ZMD), according to the geographic origins. Meanwhile, the root of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma (SMD) is occasionally used as a substitute for MD in the market. In this study, a reliable pressurized liquid extraction and HPLC-DAD-ELSD method was developed for the simultaneous determination of nine chemical components, including four steroidal saponins (ophiopojaponin C, ophiopogonin D, liriopesides B and ophiopogonin D'), four homoisoflavonoids (Methylophiopogonone A, methylophiopogonone B, methylophiopogonanone A and methylophiopogonanone B) and one sapogenin (ruscogenin) in CMD, ZMD and SMD. The method was validated in terms of linearity, sensitivity, precision, repeatability and accuracy, and then applied to the real samples from different origins. The results indicated that there were significant differences in the contents of the investigated compounds in CMD, ZMD and SMD. Ruscogenin was not detected in all the samples, and liriopesides B was only found in SMD samples. CMD contained higher ophiopogonin D and ophiopogonin D', while the other compounds were more abundant in ZMD. Moreover, the anticancer effects of the herbal extracts and selected components against A2780 human ovarian cancer cells were also compared. CMD and ZMD showed similar cytotoxic effects, which were stronger than those of SMD. The effects of MD may be due to the significant anticancer potential of ophiopognin D' and homoisoflavonoids. These results suggested that there were great differences in the chemical composition and pharmacological activity among CMD, ZMD and SMD; thus, their origins should be carefully considered in clinical application.