Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Fumaric acid

Fumaric acid Sale

(Synonyms: 反丁烯二酸) 目录号 : GC30449

Fumaric acid (Fumarate, 2-Butenedioic acid, Trans-Butenedioic acid) is an intermediate in the citric acid cycle used by cells to produce energy in the form of adenosine triphosphate (ATP) from food; also a product of the urea cycle.

Fumaric acid Chemical Structure

Cas No.:110-17-8

规格 价格 库存 购买数量
5g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Fumaric acid (Fumarate, 2-Butenedioic acid, Trans-Butenedioic acid) is an intermediate in the citric acid cycle used by cells to produce energy in the form of adenosine triphosphate (ATP) from food; also a product of the urea cycle.

Chemical Properties

Cas No. 110-17-8 SDF
别名 反丁烯二酸
Canonical SMILES O=C(O)/C=C/C(O)=O
分子式 C4H4O4 分子量 116.07
溶解度 DMSO: 25 mg/mL (215.39 mM); Water: 11.11 mg/mL (95.72 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 8.6155 mL 43.0775 mL 86.1549 mL
5 mM 1.7231 mL 8.6155 mL 17.231 mL
10 mM 0.8615 mL 4.3077 mL 8.6155 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Fumaric acid: production and separation

Fumaric acid is a valuable compound used in foods, beverages, detergents, animal feed, pharmaceuticals and miscellaneous industrial products. It is produced on a large scale by the petrochemical route but the current tendency is towards implementing "green production" and environmental friendly technologies like biotechnological production of fumaric acid using low-cost raw materials. In this context, numerous studies focus on improving the fermentation process not only by using renewable raw material and genetically modified microorganisms, but also by developing and applying different downstream techniques for easy recovery of fumaric acid from the fermented broth. This review presents the main methods for production and separation of fumaric acid, highlighting the advantages and disadvantages of these and the potential economic impact in industry.

Safety, Tolerability, and Pharmacokinetics of the Novel Antiviral Agent Ensitrelvir Fumaric Acid, a SARS-CoV-2 3CL Protease Inhibitor, in Healthy Adults

Ensitrelvir is a novel selective inhibitor of the 3C-like protease of SARS-CoV-2, which is essential for viral replication. This phase 1 study of ensitrelvir assessed its safety, tolerability, and pharmacokinetics of single (part 1, n = 50) and multiple (part 2, n = 33) ascending oral doses. Effect of food on the pharmacokinetics of ensitrelvir, differences in pharmacokinetics of ensitrelvir between Japanese and white participants, and effect of ensitrelvir on the pharmacokinetics of midazolam (a cytochrome P450 3A [CYP3A] substrate) were also assessed. In part 1, Japanese participants were randomized to placebo or ensitrelvir at doses of 20, 70, 250, 500, 1,000, or 2,000 mg. In part 2, Japanese and white participants were randomized to placebo or once-daily ensitrelvir at loading/maintenance dose 375/125 mg or 750/250 mg for 5 days. Most treatment-related adverse events observed were mild in severity and were resolved without treatment. Plasma exposures showed almost dose proportionality, and geometric mean half-life of ensitrelvir following the single dose was 42.2 to 48.1 h. Food intake reduced Cmax and delayed Tmax of ensitrelvir but did not impact the area under the curve (AUC), suggesting suitability for administration without food restriction. Compared with Japanese participants, plasma exposures were slightly lower for white participants. Ensitrelvir affected the pharmacokinetics of CYP3A substrates because of increase in AUC of midazolam coadministered with ensitrelvir 750/250 mg on day 6. In conclusion, ensitrelvir was well-tolerated and demonstrated favorable pharmacokinetics, including a long half-life, supporting once-daily oral dosing. These results validate further assessments of ensitrelvir in participants with SARS-CoV-2 infection.

Fumaric acid production by fermentation

The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations.

Bioproduction of fumaric acid: an insight into microbial strain improvement strategies

Fumaric acid (FA), a metabolic intermediate, has been identified as an important carbohydrate derived platform chemical. Currently, it is commercially sourced from petrochemicals by chemical conversion. The shift to biochemical synthesis has become essential for sustainable development and for the transition to a biobased economy from a petroleum-based economy. The main limitation is that the concentrations of FA achieved during bioproduction are lower than that from a chemical process. Moreover, the high cost associated with bioproduction necessitates a higher yield to improve the feasibility of the process. To this effect, genetic modification of microorganism can be considered as an important tool to improve FA yield. This review discusses various genetic modifications strategies that have been studied in order to improve FA production. These strategies include the development of recombinant strains of Rhizopus oryzae, Escherichia coli, Saccharomyces cerevisiae, and Torulopsis glabrata as well as their mutants. The transformed strains were able to accumulate fumaric acid at a higher concentration than the corresponding wild strains but the fumaric acid titers obtained were lower than that reported with native fumaric acid producing R. oryzae strains. Moreover, one plausible adoption of gene editing tools, such as Agrobacterium-mediated transformation (AMT), CRISPR CAS-9 and RNA interference (RNAi) mediated knockout and silencing, have been proposed in order to improve fumaric acid yield. Additionally, the introduction of the glyoxylate pathway in R. oryzae to improve fumaric acid yield as well as the biosynthesis of fumarate esters have been proposed to improve the economic feasibility of the bioprocess. The adoption of some of these genetic engineering strategies may be essential to enable the development of a feasible bioproduction process.

[Fumaric acid as therapeutic agent for multiple sclerosis]

After the approval of fumaric acid in February 2014 another first line agent is now available for the treatment of multiple sclerosis (MS). Along with the various beta interferon preparations, glatiramer acetate, teriflunomide and fumaric acid add to the repertoire of oral therapeutics for the initial treatment of relapsing remitting MS in daily practice. In order to employ these drugs in an individualized and precise medical manner and considering their efficacy and side effects, it seems worthwhile to learn the so far known mode of action and background history. Fumaric acid, as one of the newest drugs approved for MS, reveals the longest history as it was in use for decades as a treatment in psoriasis patients. Furthermore, fumaric acid is a good example for so far not extensively exploited option of drug reposition in medicine in general. The current review summarizes the outcomes of the clinical approval studies of fumaric acid in MS and discusses the dual mode of action, the immunomodulatory and tissue protective effect, as well as the reported adverse events under fumaric acid treatment. This review aims to serve an aid in the daily decision-making practice when choosing the baseline therapy for MS patients.