Home>>Peptides>>DL-Cystine

DL-Cystine

目录号 : GC68090

DL-Cystine 是一种半胱氨酸衍生物。

DL-Cystine Chemical Structure

Cas No.:923-32-0

规格 价格 库存 购买数量
1g
¥450.00
现货
5g
¥1,080.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

DL-Cystine is a cysteine derivative[1].

Amino acids and amino acid derivatives have been commercially used as ergogenic supplements. They influence the secretion of anabolic hormones, supply of fuel during exercise, mental performance during stress related tasks and prevent exercise induced muscle damage. They are recognized to be beneficial as ergogenic dietary substances[1].

[1]. Luckose F, et al. Effects of amino acid derivatives on physical, mental, and physiological activities. Crit Rev Food Sci Nutr. 2015;55(13):1793-807.

Chemical Properties

Cas No. 923-32-0 SDF Download SDF
分子式 C6H12N2O4S2 分子量 240.29
溶解度 H2O : 10 mg/mL (41.62 mM; ultrasonic and warming and adjust pH to 12 with 1M NaOH and heat to 60°C) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.1616 mL 20.8082 mL 41.6164 mL
5 mM 0.8323 mL 4.1616 mL 8.3233 mL
10 mM 0.4162 mL 2.0808 mL 4.1616 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Utilization of L- and DL-Cystine by the fungus Microsporum gypseum

Folia Microbiol (Praha) 1982;27(6):390-4.PMID:7173742DOI:10.1007/BF02876449.

Growth of the fungus Microsporum gypseum and utilization of cystine during this growth was studied in a glucose-arginine medium containing either sodium sulphate, and L-cystine or DL-Cystine. Replacement of sulphate with L-cystine brought about no significant changes in the growth of the microorganism. Utilization of L-cystine as a source of carbon and nitrogen was rapid and complete and excess sulphur was excreted into the medium in the form of sulphate. Similarly excreted were also minute amounts of sulphite which immediately reacted with the remaining cystine to form S. sulphocysteine. Growth of M. gypseum in a medium with DL-Cystine was slow. Although this substance was not utilized as readily as L-cystine, its utilization was still complete and excess sulphur was similarly excreted in the form of sulphate and sulphite. The initial step in the utilization of the D-isomer is probably its extracellular deamination.

D-cystine utilization by the chick

Poult Sci 1978 Mar;57(2):562-3.PMID:674038DOI:10.3382/ps.0570562.

Young chicks were fed graded levels of either L-cystine or DL-Cystine in a purified crystalline amino acid diet made adequate in methionine but void in cystine. Gain performance and slope-ratio efficacy comparisons indicated that the D-isomer of cystine could not be utilized by the chick.

Dimeric and monomeric surfactants derived from sulfur-containing amino acids

J Colloid Interface Sci 2010 Nov 15;351(2):472-7.PMID:20800236DOI:10.1016/j.jcis.2010.08.007.

Anionic urea-based dimeric (gemini) surfactants derived from the amino acids L-cystine, D-cystine and DL-Cystine, as well as monomeric surfactants derived from L-cysteine, L-methionine and L-cysteic acid were synthesized and their solution properties characterized by electrical conductivity, equilibrium surface tension, and steady-state fluorescence spectroscopy techniques. The geminis studied showed the lowest critical micelle concentration (cmc) values, however the monomeric cysteine counterpart exhibited superior efficiency in lowering surface tension, an unusual finding that can be attributed to the free sulfhydryl group. Chirality seems to play a role in the surface active properties of the gemini surfactants, but not on micelle formation. All the surfactants studied showed a higher preference for adsorption at the air/water interface rather than to form micelles, a fact that may be related to the urea moiety. The polarity of the interfacial region, measured with the solvatochromic probe E(T)(30) (Reichardt's betaine dye), was similar to sodium dodecyl sulphate (SDS) micelles.

Inactivation and reactivation of B. megatherium phage

J Gen Physiol 1955 Nov 20;39(2):225-58.PMID:13271723DOI:10.1085/jgp.39.2.225.

Preparation of Reversibly Inactivated (R.I.) Phage.- If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5-6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.- The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0 degrees C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.- There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20 degrees C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active right harpoon over left harpoon inactive phage, may be repeated many times at 0 degrees C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, DL-Cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.- The inactivation is too rapid, even at 0 degrees to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 10(4) particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 10(4) per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.- Addition of varying concentrations of MgSO(4) (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO(4), are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.- The rate of inactivation is too rapid to be measured with any accuracy, even at 0 degrees C. The rate of reactivation in pH 5 peptone, at 0 and 10 degrees , was measured and found to have a temperature coefficient Q(10) = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole(-1). This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15 degrees and 2.8 at 2 degrees . This corresponds to a change in free energy of -600 cal. mole(-1) and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7-8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium.