Home>>Biochemical Assay Reagents>>Diethyl pyrocarbonate

Diethyl pyrocarbonate Sale

目录号 : GC66166

Diethyl pyrocarbonate 是一种有效的、非特异性的 RNase 化学抑制剂。Diethyl pyrocarbonate 在体外用作相对特异性结合组氨酸咪唑的试剂。Diethyl pyrocarbonate 抑制兔子的中枢化学敏感性。Diethyl pyrocarbonate 可以修饰 His,Tyr,Ser 和 Thr 残基。

Diethyl pyrocarbonate Chemical Structure

Cas No.:1609-47-8

规格 价格 库存 购买数量
250mg
¥441.00
现货
500mg
¥531.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Diethyl pyrocarbonate is a potent, non-specific chemical inhibitor of RNase. Diethyl pyrocarbonate has been useful in vitro as an agent relatively specific for binding to imidazole of histidine. Diethyl pyrocarbonate inhibits central chemosensitivity in rabbits. Diethyl pyrocarbonate can modify Ser, Thr, His and Tyr residues[1].

Chemical Properties

Cas No. 1609-47-8 SDF Download SDF
分子式 C6H10O5 分子量 162.14
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.1675 mL 30.8375 mL 61.6751 mL
5 mM 1.2335 mL 6.1675 mL 12.335 mL
10 mM 0.6168 mL 3.0838 mL 6.1675 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Diethyl pyrocarbonate inactivates CD39/ecto-ATPDase by modifying His-59

Biochim Biophys Acta 2000 Jun 1;1466(1-2):267-77.PMID:10825448DOI:10.1016/s0005-2736(00)00169-3.

Diethyl pyrocarbonate (DEPC) in conditions that favour carbethoxylation of histidyl residues strongly inactivated E-type ATPase activity of a rat lung membrane preparation, as well as ecto-ATPase activity of rat vessels and human Epstein-Barr virus-transformed B lymphocytes. Inactivation of the enzyme (up to 70%) achieved at concentrations of DEPC below 0.5 mM could be fully reversed by 200 mM hydroxylamine at pH 7.5, thus confirming histidine-selective modification. UTP effectively protected the enzyme activity from DEPC inactivation. This was taken to indicate that the conformation adopted by the enzyme molecule upon substrate binding was not compatible with DEPC reaching and/or modifying the relevant histidyl residue. Substrate activation curves were interpreted to show the enzyme molecule to be inactive, at all substrate concentrations tested, when the target histidyl residue had been modified by DEPC. Comparison of known sequences of CD39-like ecto-ATP(D)ases with the results on inactivation by DEPC revealed His-59 and His-251 (according to the human CD39 sequence) as equally possible targets of the inactivating DEPC modification. Potato apyrase lacks a homologue for the former residue, while the latter is preserved in the enzyme sequence. Therefore, this enzyme was exposed to DEPC, and since hydrolysis of ATP and ADP by potato apyrase was insensitive to modification with DEPC, it was concluded that His-59 is the essential residue in CD39 that is affected by DEPC modification in a way that causes inactivation of the enzyme.

Diethyl pyrocarbonate (an imidazole binding substance) inhibits rostral VLM CO2 sensitivity

J Appl Physiol (1985) 1986 Sep;61(3):843-50.PMID:3093453DOI:10.1152/jappl.1986.61.3.843.

Diethyl pyrocarbonate (DEPC) has been useful in vitro as an agent relatively specific for binding to imidazole of histidine. Administered via the cisterna magna DEPC inhibits central chemosensitivity in conscious rabbits, supporting the alphastat hypothesis for central chemoreceptor function. In this study I have applied DEPC via 1 X 3 mm cottonoid pledgets to each of the three ventrolateral medulla (VLM) chemosensitive areas in glomectomized, vagotomized, paralyzed, and servo-ventilated alpha-chloralose-urethan-anesthetized cats. CO2 responses measured by integrated phrenic nerve output were evaluated before and after DEPC application. A dose of 40 mmol/l applied to the rostral chemosensitive area increased the CO2 threshold (5.3%) and significantly decreased (P less than 0.03; Wilcoxon sign rank test) the initial slope (-43%) and the maximum (-41%) of the CO2 response. No significant effects were observed with DEPC application in the intermediate or caudal areas. Treatment with 40 mmol/l hydroxylamine immediately after DEPC in the rostral area prevented the effects supporting the interpretation that imidazole was the reactant with DEPC. The results are consistent with the hypothesis that imidazole-histidine is involved in the mechanism of central chemoreception and indicate that only the rostral area utilizes a DEPC inhibitable mechanism.

Diethyl pyrocarbonate: a chemical probe for DNA cruciforms

Nucleic Acids Res 1986 May 27;14(10):3981-93.PMID:3714469DOI:10.1093/nar/14.10.3981.

Two palindromic DNA sequences were analyzed with respect to their chemical reactivities with Diethyl pyrocarbonate. In negatively supercoiled plasmid templates enhanced N7 carbethoxylation was found with individual purines located in presumptive single-stranded loops of DNA cruciform structures. No enhanced reactivity at these positions was observed in linear, relaxed or low superhelical density plasmids. Hyperreactivity was found over a narrow region only, indicating that stable cruciforms contain loops of minimal size. No enhanced chemical reactivity was found with the four-way junction at the base of cruciforms. Diethyl pyrocarbonate has proved a sensitive structural probe for the analysis, with single nucleotide resolution, of DNA cruciform structures.

Diethyl pyrocarbonate can detect a modified DNA structure induced by the binding of quinoxaline antibiotics

Nucleic Acids Res 1988 May 11;16(9):3655-70.PMID:3287335DOI:10.1093/nar/16.9.3655.

The reactivity of the 160 bp tyrT DNA fragment towards Diethyl pyrocarbonate (DEPC) has been investigated in the presence of bis-intercalating quinoxaline antibiotics and the synthetic depsipeptide TANDEM. At moderate concentrations of each ligand, specific purine residues (mainly adenosines) exhibit enhanced reactivity towards the probe, and several sites of enhancement appear to be related to the sequence selectivity of drug binding. Further experiments were performed with echinomycin at pH 5.5 and 4.6 to facilitate the protonation of cytosine required for formation of Hoogsteen GC base pairs. No significant increase in reactivity was observed under these conditions. Additionally, no protection of deoxyguanosine residues from methylation by dimethyl sulphate was observed in the presence of echinomycin. We conclude that the structural anomaly giving rise to drug-dependent enhanced DEPC reaction is not simply the formation of Hoogsteen base pairs adjacent to antibiotic binding sites. Nor is it due to a general unwinding of the double helix, since we show that conditions which are supposed to unwind the helix lead to a uniform increase in purine reactivity, regardless of the surrounding nucleotide sequence.

Chemical modification interference

Cold Spring Harb Protoc 2015 Jun 1;2015(6):599-603.PMID:26034302DOI:10.1101/pdb.prot081059.

Chemical modification interference is a powerful method for surveying an entire RNA molecule to identify functionally important chemical groups. The basic idea is to generate a pool of end-labeled RNAs wherein each RNA molecule is chemically modified (e.g., by Diethyl pyrocarbonate [DEPC], hydrazine, dimethyl sulfate, CMCT, or kethoxal) at a different position. The pool of RNAs is then allowed to participate in the reaction of interest. The functionally important RNA molecules (e.g., those bound by protein or that successfully participate in a processing reaction) are then separated from the nonfunctional RNA molecules (e.g., those not bound by protein or unable to participate in a processing reaction). This is often achieved by straightforward gel electrophoretic analysis. In the case of protein binding, it is necessary to be able to separate bound RNA from unbound RNA, which can be accomplished using electrophoretic mobility shift assays, filter binding, or affinity approaches (e.g., by immunoprecipitation or the use of tagged proteins). None of these techniques requires that a large fraction of RNA be bound or reacted, and, as a result, they are quite sensitive. Here we describe one example of a chemical modification interference assay in which RNA is modified with DEPC or hydrazine before binding to a protein. This technique can be readily adapted for use with other chemicals.