Home>>Lipids>> Glycerolipids>>Didocosahexaenoin

Didocosahexaenoin Sale

目录号 : GC47214

A diacylglycerol

Didocosahexaenoin Chemical Structure

Cas No.:124538-05-2

规格 价格 库存 购买数量
1 mg
¥942.00
现货
5 mg
¥4,009.00
现货
10 mg
¥7,538.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Didocosahexaenoin is a diacylglycerol that contains docosahexaenoic acid at two positions.

N/A

Chemical Properties

Cas No. 124538-05-2 SDF
Canonical SMILES OC(COC(CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)=O)COC(CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC)=O
分子式 C47H68O5 分子量 713.1
溶解度 Chloroform: slightly soluble,DMF: 10 mg/ml,Ethanol: 10 mg/ml,Ethanol:PBS (pH 7.2) (1:1): 0.5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4023 mL 7.0116 mL 14.0233 mL
5 mM 0.2805 mL 1.4023 mL 2.8047 mL
10 mM 0.1402 mL 0.7012 mL 1.4023 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Investigation of the cytotoxicity induced by Didocosahexaenoin, an omega 3 derivative, in human prostate carcinoma cell lines

Curr Res Pharmacol Drug Discov 2022 Jan 19;3:100085.PMID:35112078DOI:10.1016/j.crphar.2022.100085.

The aim of the present study was to investigate the cytotoxicity induced by an omega-3 derivative, Didocosahexaenoin (Dido) on human prostate carcinoma cells and to compare the cytotoxicity to that of docosahexaenoic acid (DHA). Different carcinoma- and non-carcinoma cells were exposed to various concentrations of omega-3 compounds at varying exposure times and the cytotoxicity was measured by MTT assay. The mechanism of Dido-induced apoptosis was investigated in prostate carcinoma cells. Dido induced stronger cytotoxicity than DHA in human prostate carcinoma cells in a dose- and time-dependent manner. Dido was also more selective and potent in inducing cytotoxicity in prostate carcinoma cells than other carcinoma cell lines tested. Pre-treatment with Dido increased the level of reactive oxygen species (ROS) in prostate carcinoma cells. Pre-treatment with various antioxidants reduced the cytotoxicity induced by Dido. Pre-treatment with Dido ≥30 ​μM also induced apoptosis which was suggested to involve an externalisation of phosphatidyl serine, a significant increase in the mitochondrial membrane potential (p ​< ​0.01) and the level of activated caspase 3/7 (p ​< ​0.05) in prostate carcinoma cells. This study is the first to show that Dido induced cytotoxicity with high selectivity and higher potency than DHA in human prostate carcinoma cells. The mechanism of action is likely to involve an increase in the level of ROS, loss in the mitochondrial membrane potential as well as externalisation of phosphatidyl serine and increase in the caspase 3/7 activity. Dido may have potential to be used for the adjuvant therapy or combination therapy with conventional chemotherapeutic drugs.

Enantiomeric separation of triacylglycerols containing very long chain fatty acids

J Chromatogr A 2018 Jul 6;1557:9-19.PMID:29729864DOI:10.1016/j.chroma.2018.04.064.

Enantiomers of triacylglycerols (TAGs) containing any combination of very long chain fatty acids (VLCFAs) and/or very long chain polyunsaturated fatty acids (VLCPUFAs) with diolein, dilinolein and Didocosahexaenoin were synthesized. Gradient non-aqueous reversed-phase high-performance liquid chromatography/high resolution atmospheric pressure chemical ionization-tandem mass spectrometry (NARP-HPLC/HRMS2-APCI) and chiral liquid chromatography were used for the separation and identification of molecular species of these TAGs. Further, NARP-LC and chiral LC were used to separate natural mixtures of TAGs obtained from four natural sources, i.e. ximenia oil (Ximenia americana), green alga (Botryococcus braunii), breweŕs yeast (Saccharomyces pastorianus) and a dinoflagellate (Amphidinium carterae). The ratio of regioisomers and enantiomers in individual samples was determined and a hypothesis has been confirmed on the biosynthetic pathway of natural TAGs, which is based on the preferential representation of VLCFAs and VLCPUFAs in the sn-1 position of the glycerol backbone.