Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Dichloroiodomethane

Dichloroiodomethane Sale

(Synonyms: 二氯碘甲烷) 目录号 : GC62931

Dichloroiodomethane 是可存在于人体中的天然产物。

Dichloroiodomethane Chemical Structure

Cas No.:594-04-7

规格 价格 库存
5 mg
¥1,080.00
待询
10 mg
¥1,710.00
待询
25 mg
¥3,510.00
待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Dichloroiodomethane is a natural compound in human beings[1].

[1]. Lalith K. Silva, et al. Quantification of Dichloroiodomethane and Bromochloroiodomethane in Human Blood by Solid-Phase Microextraction Coupled with Gas Chromatography-High-Resolution Mass Spectrometry. Journal of Analytical Toxicology, Volume 30, Issue 9, November-December 2006, Pages 670-678.

Chemical Properties

Cas No. 594-04-7 SDF
别名 二氯碘甲烷
分子式 CHCl2I 分子量 210.83
溶解度 储存条件
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.7432 mL 23.7158 mL 47.4316 mL
5 mM 0.9486 mL 4.7432 mL 9.4863 mL
10 mM 0.4743 mL 2.3716 mL 4.7432 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Quantification of Dichloroiodomethane and bromochloroiodomethane in human blood by solid-phase microextraction coupled with gas chromatography-high-resolution mass spectrometry

J Anal Toxicol 2006 Nov-Dec;30(9):670-8.PMID:17137527DOI:10.1093/jat/30.9.670.

Iodine-containing trihalomethanes (iodo-THMs) are formed as disinfection byproducts when iodide-containing water is disinfected using chloramination process. Subsequent water use may lead to human exposure to iodo-THMs. Because of health concerns surrounding exposure to iodo-THMs, a rapid, reliable, and high-throughput analytical method was developed to quantify trace levels of two iodo-THMs: Dichloroiodomethane (IDCM) and bromochloroiodomethane (IBCM) in human blood. These analytes from the headspace above blood samples were extracted using solid-phase microextraction. Analytes were then desorbed and separated by capillary gas chromatography and analyzed by high-resolution mass spectrometry with multiple ion monitoring. This method utilizes stable isotope dilution to quantify parts-per-trillion levels of all analytes, with excellent precision of < 9% coefficient of variation. At three spiked levels, method accuracy of IDCM and IBCM ranged between 6 and 20% difference when comparing spiked and measured amounts. The method limit of detection was 2 ng/L for both IDCM and IBCM. This selective, sensitive, and rapid method will help to assess human exposure to iodo-THMs and to study potential associations between exposure and adverse health outcomes.

The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes

Water Res 2021 Nov 1;206:117755.PMID:34695669DOI:10.1016/j.watres.2021.117755.

Iodinated disinfection byproducts (I-DBPs) formed in water treatment are of emerging concern due to their high toxicity and the tase-and-odor problems associated with iodinated trihalomethanes (I-THMs). Iodoacetic acid and Dichloroiodomethane are currently regulated in Shenzhen, China and the Ministry of Health of the People's Republic of China has also been considering regulating I-DBPs. Iodide (I-), organoiodine compounds (e.g., iodinated X-ray contrast media [ICM]), and iodate (IO3-) are the three common iodine sources in aquatic environment that lead to I-DBP formation. While UV irradiation effectively inactivate a wide range of microorganisms in water, it induces the transformation of these iodine sources, enabling the formation of I-DBPs. This review focuses on the fate and transformation of these iodine sources in UV-based water treatment (i.e., UV irradiation and UV-based advanced oxidation processes [UV-AOPs]) and the formation of I-DBPs in post-disinfection. I- released in UV-based treatments of ICM and can be oxidized in subsequent disinfection to hypoiodous acid (HOI), which reacts with natural organic matter (NOM) to produce I-DBPs. Both UV and UV-AOPs are not able to fully mineralize ICM and completely oxidize the released I- to (except UV/O3). Results reveal that UV and UV-AOPs are adequate for I-DBP degradation but require high UV doses. While the ideal I-DBP mitigation strategy awaits to be developed, understanding their sources and formation pathways aids in informed selections of water treatment processes, empowers water suppliers to meet drinking water standards, and minimizes consumers' exposure to I-DBPs.

Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water

Environ Sci Technol 2008 Nov 15;42(22):8330-8.PMID:19068814DOI:10.1021/es801169k.

An occurrence study was conducted to measure five iodo-acids (iodoacetic acid, bromoiodoacetic acid, (Z)-3-bromo-3-iodo-propenoic acid, (E)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3-methylbutenedioic acid) and two iodo-trihalomethanes (iodo-THMs), (Dichloroiodomethane and bromochloroiodomethane) in chloraminated and chlorinated drinking waters from 23 cities in the United States and Canada. Since iodoacetic acid was previouslyfound to be genotoxic in mammalian cells, the iodo-acids and iodo-THMs were analyzed for toxicity. A gas chromatography (GC)/negative chemical ionization-mass spectrometry (MS) method was developed to measure the iodo-acids; iodo-THMs were measured using GC/high resolution electron ionization-MS with isotope dilution. The iodo-acids and iodo-THMs were found in waters from most plants, at maximum levels of 1.7 microg/L (iodoacetic acid), 1.4 microg/L (bromoiodoacetic acid), 0.50 microg/L ((Z)-3-bromo-3-iodopropenoic acid), 0.28 microg/L ((E)-3-bromo-3-iodopropenoic acid), 0.58 microg/L ((E)-2-iodo-3-methylbutenedioic acid), 10.2 microg/L (bromochloroiodomethane), and 7.9 microg/L (Dichloroiodomethane). Iodo-acids and iodo-THMs were highest at plants with short free chlorine contact times (< 1 min), and were lowest at a chlorine-only plant or at plants with long free chlorine contact times (> 45 min). Iodide levels in source waters ranged from 0.4 to 104.2 microg/L (when detected), but there was not a consistent correlation between bromide and iodide. The rank order for mammalian cell chronic cytotoxicity of the compounds measured in this study, plus other iodinated compounds, was iodoacetic acid > (E)-3-bromo-2-iodopropenoic acid > iodoform > (E)-3-bromo-3-iodo-propenoic acid > (Z)-3-bromo-3-iodo-propenoic acid > diiodoacetic acid > bromoiodoacetic acid > (E)-2-iodo-3-methylbutenedioic acid > bromodiiodomethane > dibromoiodomethane > bromochloroiodomethane approximately chlorodiiodomethane > Dichloroiodomethane. With the exception of iodoform, the iodo-THMs were much less cytotoxic than the iodo-acids. Of the 13 compounds analyzed, 7 were genotoxic; their rank order was iodoacetic acid >> diiodoacetic acid > chlorodiiodomethane > bromoiodoacetic acid > E-2-iodo-3-methylbutenedioic acid > (E)-3-bromo-3-iodo-propenoic acid > (E)-3-bromo-2-iodopropenoic acid. In general, compounds that contain an iodo-group have enhanced mammalian cell cytotoxicity and genotoxicity as compared to their brominated and chlorinated analogues.

Formation of DBPs and halogen-specific TOX in the presence of iopamidol and chlorinated oxidants

Chemosphere 2018 Jul;202:349-357.PMID:29574388DOI:10.1016/j.chemosphere.2018.03.102.

Iopamidol is a known direct precursor to iodinated and chlorinated DBP formation; however, the influence of iopamidol on both iodo/chloro-DBP formation has yet to be fully investigated. This study investigated the effect of iopamidol on the formation and speciation of halogen-specific total organic halogen (TOX), as well as iodo/chloro-DBPs, in the presence of 3 source waters (SWs) from Northeast Ohio and chlorinated oxidants. Chlorination and chloramination of SWs were carried out at pH 6.5-9.0 and, different iopamidol and dissolved organic carbon (DOC) concentrations. Total organic iodine (TOI) loss was approximately equal (22-35%) regardless of SW. Total organic chlorine (TOCl) increased in all SWs and was substantially higher in the higher SUVA254 SWs. Iopamidol was a direct precursor to chloroform (CHCl3), trichloroacetic acid (TCAA), and Dichloroiodomethane (CHCl2I) formation. While CHCl3 and TCAA exhibited different formation trends with varying iopamidol concentrations, CHCl2I increased with increasing iopamidol and DOC concentrations. Low concentrations of iodo-acids were detected without discernible trends. Total trihalomethanes (THMs), total haloacetic acids (HAAs), TOCl, and unknown TOCl (UTOCl) were correlated with fluorescence regional volumes and SUVA254. The yields of all these species showed a strong positive correlation with fulvic, humic, and combined humic and fulvic regions, as well as SUVA254. Iopamidol was then compared to the 3 SWs with respect to DBP yield. Although the SUVA254 of iopamidol was relatively high, it did not produce high yields of THMs and HAAs compared to the 3 SWs. However, chlorination of iopamidol did result in high yields of TOCl and UTOCl.

Selective adsorption mechanisms of iodinated trihalomethanes onto thiol-functionalized HKUST-1s in a mixed solute

J Environ Manage 2022 Aug 1;315:115099.PMID:35500481DOI:10.1016/j.jenvman.2022.115099.

The selective adsorption mechanisms involved in the competitive adsorption of five iodinated trihalomethanes (I-THMs) onto dithiolglycol and (3-mercaptopropyl)-trimethoxy functionalized HKUST-1 (HK-SH and HK-MPTS, respectively) were investigated by single- and mixed-batch adsorption. HK-SH had the highest adsorption rates and capacities for the five I-THMs, followed by HK-MPTS and pristine HKUST-1, even though the porosity and surface area decreased after modification. The primary adsorptive mechanism of HK-SH consists of ion-dipole interactions of I-THMs with the protonated hydroxyl and thiol groups at the metal (Cu) node, which is supported by Lewis acid-base reactions via Cu-Cu complex and π-π interactions. In a mixed solute, bromodiiodomethane, which was the most hydrophobic and had the smallest molecular size, exhibited the most competitive adsorption on HK-SH. In contrast, the selective adsorption of I-THMs onto HK-MPTS was affected by their log Kow values, causing hydrophobic partitioning onto the alkyl chain of the mercaptopropyl group. Iodinated haloforms tend to achieve a higher adsorption rate and capacity than chlorinated and brominated haloforms via hydrophobic partitioning. Moreover, dithiolglycol grafted onto HK-SH can better promote the excellent selective adsorption performance of iodoacetamide than Dichloroiodomethane and iodoacetic acid in both single- and mixed-solute solutions due to hydrogen bonding via the -NH2 group of diiodoacetamide.