Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Decyl aldehyde

Decyl aldehyde Sale

(Synonyms: 癸醛) 目录号 : GC30651

Decyl aldehyde (Decanal, Capraldehyde, Decanaldehyde) is a naturally occuring organic compound that is used in fragrances and flavoring.

Decyl aldehyde Chemical Structure

Cas No.:112-31-2

规格 价格 库存 购买数量
100ml
¥300.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Decyl aldehyde (Decanal, Capraldehyde, Decanaldehyde) is a naturally occuring organic compound that is used in fragrances and flavoring.

Chemical Properties

Cas No. 112-31-2 SDF
别名 癸醛
Canonical SMILES CCCCCCCCCC=O
分子式 C10H20O 分子量 156.27
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.3992 mL 31.9959 mL 63.9918 mL
5 mM 1.2798 mL 6.3992 mL 12.7984 mL
10 mM 0.6399 mL 3.1996 mL 6.3992 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Toxicity of the bacterial luciferase substrate, n-decyl aldehyde, to Saccharomyces cerevisiae and Caenorhabditis elegans

This study determined that the bacterial luciferase fusion gene (luxAB) was not a suitable in vivo gene reporter in the model eukaryotic organisms Saccharomyces cerevisiae and Caenorhabditis elegans. LuxAB expressing S. cerevisiae strains displayed distinctive rapid decays in luminescence upon addition of the bacterial luciferase substrate, n-decyl aldehyde, suggesting a toxic response. Growth studies and toxicity bioassays have subsequently confirmed, that the aldehyde substrate was toxic to both organisms at concentrations well tolerated by Escherichia coli. As the addition of aldehyde is an integral part of the bacterial luciferase activity assay, our results do not support the use of lux reporter genes for in vivo analyses in these model eukaryotic organisms.

Identification of off-flavor compounds and deodorizing of cattle by-products

An unnatural flavor in a food or drink product caused by the presence of undesirable compounds due to contamination or deterioration is called off-flavor. This study determined the characteristics of cattle by-products off-flavor (heart, liver, lung, rumen, and intestine). We identified 25, 34, 26, 22, and 26 volatile compounds from the heart, liver, lung, rumen, and intestine, respectively, in the bovine via headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). Based on the relative odor activity value (ROAV ≥ 1), 16 volatile compounds were labeled as characteristic off-flavor by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The compounds involved in the characteristic off-flavor in bovine heart were E,E-2,4-nonadienal, E,E-2,4-decadien-1-al, hexanal, (E)-2-octenal, and decyl aldehyde. In the bovine liver, the off-flavor compounds were 1-nonanol, ethyl hexanoate, 2-octanone, and dodecyl aldehyde and in bovine lung 3-heptylacrolein was the off-flavor compound. In bovine rumen, heptaldehyde, octanal, p-cresol, and 1-nonanal were off-flavor compounds, and lastly, 1-octen-3-ol and E-2-nonenal were off-flavor compounds with bovine intestine. The cattle by-products were deodorized by shallot-ginger extract masking, baker's yeast fermentation, active dry yeast + β-cyclodextrin (β-CD) composite, and ultrasound + chitosan composite. The above 16 labeled characteristic compounds decreased in concentration. The ultrasound + chitosan composite method showed a significantly better effect than the other methods (p < .05). The aim of this study was to determine the characteristic flavor information of cattle by-products and provide idea on how to improve the flavor by various deodorization methods. PRACTICAL APPLICATIONS: This study investigated the volatile flavor compounds of cattle by-products from five organs (heart, liver, lung, rumen, and intestine) by headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). The 16 volatile compounds were labeled as the major characteristic off-flavor compounds by relative odor activity values and principal component analysis. Four different deodorization methods were adopted, and among them, ultrasound + chitosan composite method showed best results. This study has provided useful information about the characteristic off-flavor compounds and suggests how to improve the flavor of cattle by-products through various deodorization methods.

Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism

The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobactor sp. strain HO1-N.