Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>D-Panthenol (Dexpanthenol)

D-Panthenol (Dexpanthenol) Sale

(Synonyms: D-泛醇; Dexpanthenol) 目录号 : GC31853

D panthenol (Dexpanthenol, D-Panthenol, Pantothenol, Ilopan, D-Pantothenyl alcohol) is an alcoholic analogue of D-pantothenic acid and cholinergic agent.

D-Panthenol (Dexpanthenol) Chemical Structure

Cas No.:81-13-0

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥491.00
现货
1g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

D panthenol (Dexpanthenol, D-Panthenol, Pantothenol, Ilopan, D-Pantothenyl alcohol) is an alcoholic analogue of D-pantothenic acid and cholinergic agent.

Dexpanthenol has positive effects on protection of cerebral tissue after ischaemia reperfusion[1]. Topical application of dexpanthenol is widely used in clinical practice for the improvement of wound healing. Upregulation of IL-6, IL-1, CYP1B1, CXCL1, CCL18 and KAP 4-2 gene expression and downregulation of psorasin mRNA and protein expression are identified in samples treated topically with dexpanthenol[2].

[1] Zakaria MM, et al. J Pak Med Assoc. 2011, 61(9):889-92. [2] Heise R, et al. Skin Pharmacol Physiol. 2012, 25(5):241-8.

Chemical Properties

Cas No. 81-13-0 SDF
别名 D-泛醇; Dexpanthenol
Canonical SMILES O=C(NCCCO)[C@H](O)C(C)(C)CO
分子式 C9H19NO4 分子量 205.25
溶解度 ≥101.6 mg/mL in DMSO; ≥111.2 mg/mL in EtOH; ≥97.4 mg/mL in Water 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.8721 mL 24.3605 mL 48.7211 mL
5 mM 0.9744 mL 4.8721 mL 9.7442 mL
10 mM 0.4872 mL 2.4361 mL 4.8721 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Topical use of dexpanthenol: a 70th anniversary article

Approximately 70 years ago, the first topical dexpanthenol-containing formulation (Bepanthen? Ointment) has been developed. Nowadays, various topical dexpanthenol preparations exist, tailored according to individual requirements. Topical dexpanthenol has emerged as frequently used formulation in the field of dermatology and skin care. Various studies confirmed dexpanthenol's moisturizing and skin barrier enhancing potential. It prevents skin irritation, stimulates skin regeneration and promotes wound healing. Two main directions in the use of topical dexpanthenol-containing formulations have therefore been pursued: as skin moisturizer/skin barrier restorer and as facilitator of wound healing. This 70th anniversary paper reviews studies with topical dexpanthenol in skin conditions where it is most frequently used. Although discovered decades ago, the exact mechanisms of action of dexpanthenol have not been fully elucidated yet. With the adoption of new technologies, new light has been shed on dexpanthenol's mode of action at the molecular level. It appears that dexpanthenol increases the mobility of stratum corneum molecular components which are important for barrier function and modulates the expression of genes important for wound healing. This review will update readers on recent advances in this field.

Topical use of dexpanthenol in skin disorders

Pantothenic acid is essential to normal epithelial function. It is a component of coenzyme A, which serves as a cofactor for a variety of enzyme-catalyzed reactions that are important in the metabolism of carbohydrates, fatty acids, proteins, gluconeogenesis, sterols, steroid hormones, and porphyrins. The topical use of dexpanthenol, the stable alcoholic analog of pantothenic acid, is based on good skin penetration and high local concentrations of dexpanthenol when administered in an adequate vehicle, such as water-in-oil emulsions. Topical dexpanthenol acts like a moisturizer, improving stratum corneum hydration, reducing transepidermal water loss and maintaining skin softness and elasticity. Activation of fibroblast proliferation, which is of relevance in wound healing, has been observed both in vitro and in vivo with dexpanthenol. Accelerated re-epithelization in wound healing, monitored by means of the transepidermal water loss as an indicator of the intact epidermal barrier function, has also been seen. Dexpanthenol has been shown to have an anti-inflammatory effect on experimental ultraviolet-induced erythema. Beneficial effects of dexpanthenol have been observed in patients who have undergone skin transplantation or scar treatment, or therapy for burn injuries and different dermatoses. The stimulation of epithelization, granulation and mitigation of itching were the most prominent effects of formulations containing dexpanthenol. In double-blind placebo-controlled clinical trials, dexpanthenol was evaluated for its efficacy in improving wound healing. Epidermal wounds treated with dexpanthenol emulsion showed a reduction in erythema, and more elastic and solid tissue regeneration. Monitoring of transepidermal water loss showed a significant acceleration of epidermal regeneration as a result of dexpanthenol therapy, as compared with the vehicle. In an irritation model, pretreatment with dexpanthenol cream resulted in significantly less damage to the stratum corneum barrier, compared with no pretreatment. Adjuvant skin care with dexpanthenol considerably improved the symptoms of skin irritation, such as dryness of the skin, roughness, scaling, pruritus, erythema, erosion/fissures, over 3 to 4 weeks. Usually, the topical administration of dexpanthenol preparations is well tolerated, with minimal risk of skin irritancy or sensitization.

The Diagnosis and Treatment of Idiopathic Facial Paresis (Bell's Palsy)

Background: Peripheral facial nerve palsy is the most com- mon functional disturbance of a cranial nerve. 60-75% of cases are idiopathic.
Methods: This review is based on a selective literature search proceeding from the current, updated German-language guideline on the diagnosis and treatment of idiopathic facial nerve palsy.
Results: The recommended drug treatment consists of prednisolone 25 mg bid for 10 days, or 60 mg qd for 5 days followed by a taper to off in decrements of 10 mg per day. This promotes full recovery (number needed to treat [NNT] = 10; 95% confidence interval [6; 20]) and lessens the risk of late sequelae such as synkinesia, autonomic disturbances, and contractures. Virostatic drugs are optional in severe cases (intense pain or suspicion of herpes zoster sine herpete) and mandatory in cases of varicella-zoster virus (VZV) infection. Corneal protection with dexpanthenol ophthalmic ointment, artificial tears, and a nocturnal moisture- retaining eye shield has been found useful in practice. In cases of incomplete recovery with residual facial weakness, both static and microsurgical dynamic methods can be used to restore facial nerve function.
Conclusion: Because 25-40% of cases of facial nerve palsy are not idiopathic, differential diagnosis is very important; key diagnostic methods include a clinical neurological examin- ation, otoscopy, and a lumbar puncture for cerebrospinal fluid examination. High-level evidence supports corticosteroid treatment for the idiopathic form of the disorder.

Protective Effect of D-Panthenol in Rhabdomyolysis-Induced Acute Kidney Injury

We investigated the nephroprotective effect of D-panthenol in rhabdomyolysis-induced acute kidney injury (AKI). Adult male Wistar rats were injected with 50% glycerol solution to induce rhabdomyolysis. Animals with rhabdomyolysis were injected with D-panthenol (200 mg/kg) for 7 days. On day 8, we examined AKI markers, renal histology, antioxidant capacity, and protein glutathionylation in kidneys to uncover mechanisms of D-panthenol effects. Rhabdomyolysis kidneys were shown to have pathomorphological alterations (mononuclear infiltration, dilatation of tubules, and hyaline casts in Henle's loops and collecting ducts). Activities of skeletal muscle damage markers (creatine kinase and lactate dehydrogenase) increased, myoglobinuria was observed, and creatinine, BUN, and pantetheinase activity in serum and urine rose. Signs of oxidative stress in the kidney tissue of rhabdomyolysis rats, increased levels of lipid peroxidation products, and activities of antioxidant enzymes (SOD, catalase, and glutathione peroxidase) were all alleviated by administration of D-panthenol. Its application improved kidney morphology and decreased AKI markers. Mechanisms of D-panthenol's beneficial effects were associated with an increase in total coenzyme A levels, activity of Krebs cycle enzymes, and attenuation of protein glutathionylation. D-Panthenol protects kidneys from rhabdomyolysis-induced AKI through antioxidant effects, normalization of mitochondrial metabolism, and modulation of glutathione-dependent signaling.

Dexpanthenol Promotes Cell Growth by Preventing Cell Senescence and Apoptosis in Cultured Human Hair Follicle Cells

Dexpanthenol (D-panthenol) is a precursor of vitamin B5 (pantothenic acid) and is widely used for dietary supplements and topical applications. D-panthenol has long been used in hair care products for the purpose of anti-hair loss, its effects and the underlying mechanisms, however, were barely reported. In this study, the effects of D-panthenol on human hair follicle cells, including dermal papilla cells (hDPCs) and outer root sheath cells (hORSCs), were investigated. D-panthenol enhanced the cell viability, increasing the cellular proliferation marker Ki67 in cultured hDPCs. The markers for apoptosis (Caspase3/9) and cell senescence (p21/p16), reported to be expressed in aged or resting phase follicles, were significantly reduced by D-panthenol. Anagen-inducing factors (ALP; β-catenin; versican), which trigger or elongate the anagen phase, were stimulated by D-panthenol. On the other hand, D-panthenol reduced TGF-β1 expressions in both mRNA and protein levels. The expression of VEGF, which is important for peripheral blood vessel activation; was up-regulated by D-panthenol treatment. In cultured hORSCs, cell proliferation and viability were enhanced, while the mRNA expression of cell senescence markers (p21/p16) was significantly down-regulated. The expressions of both VEGF and its receptor (VEGFR) were up-regulated by D-panthenol. In conclusion, our data suggest that the hair growth stimulating activity of D-panthenol was exerted by increasing the cell viability, suppressing the apoptotic markers, and elongating the anagen phase in hair follicles.