Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Cyclohexaneacetic acid

Cyclohexaneacetic acid Sale

(Synonyms: 环己基乙酸) 目录号 : GC60734

Cyclohexaneacetic acid is a flavouring ingredient.

Cyclohexaneacetic acid Chemical Structure

Cas No.:5292-21-7

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Cyclohexaneacetic acid is a flavouring ingredient.

Chemical Properties

Cas No. 5292-21-7 SDF
别名 环己基乙酸
Canonical SMILES O=C(O)CC1CCCCC1
分子式 C8H14O2 分子量 142.2
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.0323 mL 35.1617 mL 70.3235 mL
5 mM 1.4065 mL 7.0323 mL 14.0647 mL
10 mM 0.7032 mL 3.5162 mL 7.0323 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Enhanced bioremediation of Cyclohexaneacetic acid in offshore sediments with green synthetic iron oxide and Pseudoalteromonas sp

Environ Sci Pollut Res Int 2022 Dec 8.PMID:36481851DOI:10.1007/s11356-022-24629-7.

Naphthenic acids (NAs) have been found to exert serious threats on offshore sediment ecosystems and human health in recent years, which entails us the urgent need for NAs remediation. Bioremediation is considered an ideal method for sediment remediation due to ecological sustainability and economic feasibility. However, current bioremediation efficiency of offshore sediments suffers from relatively slow and there has never any attempts to bioremediate offshore sediment NAs contamination hitherto. In this study, the green synthetic iron oxides (gFeOx) based on Laminaria extracts was employed to enhance the biodegradation of NAs (Cyclohexylacetic acid, CHAA) in offshore sediments by Pseudoalteromonas sp. JSTW (an indigenous microorganism). The results showed that CHAA (20 mg·kg-1) in offshore sediments was removed almost 100% within 7 days at 30 mg·kg-1 gFeOx and 0.6 mg·kg-1 Strain JSTW. High-throughput sequencing results revealed that the structure and function of sediment microbial community were essentially restored to uncontaminated levels after bioremediation, highlighting the joint remediation approach is an efficient and eco-friendly method. Overall, this work has firstly provided insights into the application for NAs in situ bioremediation in offshore sediments.

Metabolic Disturbance and Th17/Treg Imbalance Are Associated With Progression of Gingivitis

Front Immunol 2021 Jun 21;12:670178.PMID:34234776DOI:10.3389/fimmu.2021.670178.

Objective: This study sought to explore the role of metabolic disturbance in immunoregulation of gingivitis targeting T helper 17 cells (Th17)/regulatory T cell (Treg). Materials and methods: A total of 20 gingivitis patients and 19 healthy volunteers were recruited. Quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate expression patterns of Forkhead box protein P3 (Foxp3), transforming growth factor-β (TGF-β), retinoid-related orphan receptor-gammat (RORγt) and interleukin 17A (IL-17A) in the peripheral blood lymphocytes of subjects across the two groups. Moreover, the enzyme-linked immunosorbent assay (ELISA) technique was used to detect levels of TGF-β, IL-4, IL-6,TL-10 and L-17A secreted in the plasma as well as the SIgA secreted in saliva. Flow cytometry was used to detect the percentage of CD4+CD25+ Foxp3+Treg cells and the percentage of CD4+IL-17A+ Th17 cells in whole blood of subjects in both groups. Gas chromatography-mass spectrometry (GC-MS) was employed to analyze the plasma metabolites in the gingivitis patient group. Statistical analysis was applied to determine whether the plasma metabolites and related metabolic pathways significantly differed between gingivitis patients and healthy controls. Ingenuity pathway analysis (IPA) was employed to identify the potential relation between the metabolites and the Th17 and Treg related pathway. Results: The percentages of CD4+IL17A+Th17 cells and IL-17 significantly increased in the peripheral blood in the gingivitis group. Moreover, the upregulation of IL-17A mRNA and RORγt mRNA were also found in the gingivitis group. However, the percentage of CD4+CD25+ Foxp3+Treg cells and Foxp3 mRNA in the whole blood did not significantly change. However, TGF-β mRNA as well as TGF-β, IL-4, IL-6, IL-10 in the periperial blood and SIgA in the saliva were higher in the gingivitis group. Notably, that the ratio of Th17/Treg cells was significantly increased during peripheral circulation. Furthermore, we identified 18 different metabolites which were differentially expressed in plasma between the gingivitis and healthy control groups. Notably, the levels of cholesterol, glycerol 1-octadecanoate, d-glucose, uric acid, Cyclohexaneacetic acid, 3-pyridine, tryptophan, and undecane 2,4-dimethyl were significantly up-regulated. whereas the levels of lactic acid, glycine, linoleic acid, monopalmitic acid, glycerol, palmitic acid, pyruvate, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, 1 5-anhydro d-altrol, and boric acid were down-regulated in the gingivitis group, relative to healthy controls. IPA showed that these metabolites are connected to IL17 signaling, TGF-B signaling, and IL10 signaling, which are related closely to Th17 and Treg pathway. Conclusion: Overall, these results showed that disturbance to glycolysis as well as amino and fatty acid metabolism are associated with Th17/Treg balance in gingivitis. Impaired immunometabolism may influence some periodontally involved systemic diseases, hence it is a promising strategy in targeted development of treatment therapies.

Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta

Chemosphere 2011 Jul;84(4):504-11.PMID:21459409DOI:10.1016/j.chemosphere.2011.03.012.

Naphthenic acids (NAs) are a major contributor to toxicity in tailings waste generated from bitumen production in the Athabasca Oil Sands region. While investigations have shown that bacteria can biodegrade NAs and reduce tailings toxicity, the potential of algae to biodegrade NAs and the biochemical mechanisms involved remain poorly understood. Here, we discovered that the marine alga Dunaliella tertiolecta is able to tolerate five model NAs (cyclohexanecarboxylic acid, Cyclohexaneacetic acid, cyclohexanepropionic acid, cyclohexanebutyric acid and 1,2,3,4-tetrahydro-2-naphthoic acid) at 300mgL(-1), a level which exceeds that of any single or combination of NAs typically found in tailings ponds. Moreover, we show that D. tertiolecta can metabolize four of the model NAs. Analysis of NA-amended cultures of D. tertiolecta via low resolution gas chromatography-mass spectrometry allowed us to quantify decreasing NA levels, identify metabolites, and formulate putative mechanisms of biodegradation. Degradation of cyclohexanebutyric acid and cyclohexanepropionic acid proceeded via β-oxidation and resulted in the transient accumulation of Cyclohexaneacetic acid and cyclohexanecarboxylic acid, respectively. Cyclohexanecarboxylic acid was metabolized via 1-cyclohexenecarboxylic acid suggesting that further degradation may occur by step-wise β-oxidation. When D. tertiolecta was inoculated in the presence of oil sands tailings water from the Athabasca region, biodegradation of single-ring NAs was observed relative to controls. This result corroborates the trend we observed with the single-ring model NAs.

Metabolism of Cyclohexaneacetic acid and cyclohexanebutyric acid by Arthrobacter sp. strain CA1

J Bacteriol 1982 Jun;150(3):1172-82.PMID:7076617DOI:10.1128/jb.150.3.1172-1182.1982.

A strain of Arthrobacter was isolated by enrichment culture with cyclohexaneacetate as the sole source of carbon and grew with a doubling time of 4.2 h. In addition to growing with cyclohexaneacetate, the organism also grew with cyclohexanebutyrate at concentrations not above 0.05%, and with a variety of alicyclic ketones and alcohols. Oxidation of cyclohexaneacetate proceeded through formation of the coenzyme A (CoA) ester followed by initiation of a beta-oxidation cycle. beta-Oxidation was blocked before the second dehydrogenation step due to the formation of a tertiary alcohol, and the side chain was eliminated as acetyl-CoA by the action of (1-hydroxycyclohexan-1-yl)acetyl-CoA lyase. The cyclohexanone thus formed was degraded by a well-described route that involves ring-oxygen insertion by a biological Baeyer-Villiger oxygenase. All enzymes of the proposed metabolic sequence were demonstrated in cell-free extracts. Arthrobacter sp. strain CA1 synthesized constitutive beta-oxidative enzymes, but further induction of enzymes active toward cyclohexaneacetate and its metabolites could occur during growth with the alicyclic acid. Other enzymes of the sequence, (1-hydroxycyclohexan-1-yl)acetyl-CoA lyase and enzymes of cyclohexanone oxidation, were present at negligible levels in succinate-grown cells but induced by growth with cyclohexaneacetate. The oxidation of cyclohexanebutyrate was integrated into the pathway for cyclohexaneacetate oxidation by a single beta-oxidation cycle. Oxidation of the compound could be divided into two phases. Initial oxidation to (1-hydroxycyclohexan-1-yl)acetate could be catalyzed by constitutive enzymes, whereas the further degradation of (1-hydroxycyclohexan-1-yl)acetate was dependent on induced enzyme synthesis which could be inhibited by chloramphenicol with the consequent accumulation of cyclohexaneacetate and (1-hydroxycyclohexan-1-yl)acetate.

Gabapentin

Epilepsia 1999;40 Suppl 5:S63-70.PMID:10530696DOI:10.1111/j.1528-1157.1999.tb00921.x.

Gabapentin (GBP) is a antiepileptic drug (AED) indicated as adjunct therapy for treatment of partial seizures, with and without secondary generalization, in patients 12 and older with epilepsy. GBP (1-(aminomethyl) Cyclohexaneacetic acid) is structurally related to gamma-aminobutyric acid (GABA), which readily crosses the blood-brain barrier. Radiolabeled GBP binds throughout the central nervous system in anatomic areas important in treatment of seizures. Its precise mechanism of action is unknown. An open-label, dose-ranging study of doses up to 1,800 mg produced > or =50% seizure reductions [responder rate (RR)] in 29% of patients with partial seizures. Three double-blind, placebo-controlled, parallel add-on trials at doses of 300-1,800 mg have produced RR of up to 28%, with a placebo RR of 8-10%. An active controlled, parallel group comparison of 600 mg to 2,400 mg in monotherapy conversion design showed no significant difference among the 600 mg, 1,200 mg, and 2,400 mg groups compared to a placebo group. An inpatient, active-controlled comparison of 300 mg and 3,600 mg in a parallel-design monotherapy trial showed that time to exit from the study was significantly longer for the 3,600-mg group and the completion rate significantly higher (53% vs. 17%) for patients receiving 3,600 mg/day vs. 300 mg/day of GBP. Successful double-blind, placebo-controlled trials in refractory childhood partial seizures and benign childhood epilepsy with centrotemporal spikes have been recently concluded. Absence was not successfully treated in one small double-blind trial. Open-label reports emphasize adjustments of patients to higher doses than those indicated in the package labeling. An open-label trial of GBP therapy in patients with partial seizures (n = 2,216) produced progressively greater seizure freedom rates as patients were titrated from > or =900 mg daily to > or = 1,800 mg daily (15.1% vs. 33.4%), with a similar effect on RR (18.1% vs. 44.9%). An add-on, open-label study treating partial seizures (n = 141) reported an RR of 71%, with 46% seizure-free in the last 8 weeks of treatment and doses up to 2,400 mg daily. A comparison trial of three doses of GBP to 600 mg of carbamazepine showed similar retention rates for 1,800 mg of GBP and 600 mg of CBZ. Another study reported 48% of patients experiencing 50% reduction, nine of whom had doses greater than 2,400 mg. Treatment in children has reported a 34.4% RR in 32 children with refractory partial seizures. A French open-label adjunctive trial documented a 33.9% RR; 13.4% were seizure-free during the evaluation period. Adverse experiences most commonly noted included somnolence, dizziness, and ataxia. Weight gain was sometimes reported with higher doses of GBP, and pediatric reports cite prominent behavioral changes, including hyperactivity, irritability, and agitation. GBP appears best used at doses at and potentially above those suggested in its package labeling. Although efficacy occurs at lower levels, increased GBP doses are associated with additional efficacy. Reports suggest that initiation at 2,400 mg or 3,600 mg may not be associated with increased adverse experiences. Titration to 900 or 1,200 mg on the first day of GBP therapy appear to be well tolerated.