Home>>Infectious Disease>> Bacterial Diseases>>Chloramine-T (hydrate)

Chloramine-T (hydrate) Sale

(Synonyms: 氯氨T) 目录号 : GC47079

A common reagent

Chloramine-T (hydrate) Chemical Structure

Cas No.:149358-73-6

规格 价格 库存 购买数量
5 g
¥428.00
现货
10 g
¥823.00
现货
25 g
¥1,936.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Chloramine-T is a common reagent in a variety of synthetic processes.1 It has been used as a reagent in aminohydroxylation and allylic amination reactions, as a nitrogen source for the aziridination of alkenes and olefins, and in the deprotection of thio groups in sulfur-containing compounds, among others. It has been used as a reagent in the synthesis of Factor Xa inhibitors.2 Chloramine-T (0.2% w/v) is also an antiseptic agent that is bactericidal against S. epidermidis, S. aureus, E. faecalis, E. coli, P. mirabilis, and E. cloacae.3

1.Agnihotri, G.Chloramine-T (sodium N-chloro-p-toluenesulfonamide)Synlett182857-2858(2005) 2.Lam, P.Y.S., Clark, C.G., Li, R., et al.Structure-based design of novel guanidine/benzamidine mimics: Potent and orally bioavailable factor Xa inhibitors as novel anticoagulantsJ. Med Chem.46(21)4405-4418(2003) 3.Fuursted, K., Hjort, A., and L., K.Evaluation of bactericidal activity and lag of regrowth (postantibiotic effect) of five antiseptics on nine bacterial pathogensJ. Antimicrob. Chemother.40(2)221-226(1997)

Chemical Properties

Cas No. 149358-73-6 SDF
别名 氯氨T
Canonical SMILES CC1=CC=C(S([N-]Cl)(=O)=O)C=C1.[Na+].O
分子式 C7H7ClNO2S.Na [XH2O] 分子量 227.6
溶解度 DMF: 10mg/mL,DMSO: 15mg/mL,Ethanol: 5mg/mL,PBS (pH 7.2): 5mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.3937 mL 21.9684 mL 43.9367 mL
5 mM 0.8787 mL 4.3937 mL 8.7873 mL
10 mM 0.4394 mL 2.1968 mL 4.3937 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Amination of ethers using Chloramine-T hydrate and a copper(I) catalyst

Org Biomol Chem 2005 Jan 7;3(1):107-11.PMID:15602604DOI:10.1039/b410883c.

Amination of C-H bonds activated by ether oxygen atoms is facile with Chloramine-T as nitrene source and copper(I) chloride in acetonitrile as catalyst. For cyclic ethers the hemiaminal products are generally stable and can be isolated pure. For acyclic ethers, the hemiaminal products, as expected, fragment with elimination of alcohol to yield imines. When activation of benzylic positions is remote through a conjugated system, stable benzylamine derivatives are isolated. Mechanistic studies are consistent with concerted insertion of an electrophilic nitrenoid into the C-H bond in the rate-determining step, though in an asynchronous manner with a more activated substrate.

Antioxidant and Antimicrobial Activity of 5-methyl-2-(5-methyl-1,3-diphenyl-1H-pyrazole-4-carbonyl)-2,4-dihydro-pyrazol-3-one

Int J Biomed Sci 2009 Dec;5(4):359-68.PMID:23675159doi

Cycloaddition of nitrile imines 4 generated in situ by the catalytic dehydrogenation of diphenyl hydrazones 3 using Chloramine-T (CAT) as oxidant in glacial acetic acid with enolic form of ethyl acetoacetate 5 afforded Ethyl 3-aryl-5-methyl-1-phenyl-1H-pyrazol-4-carboxylate 6 in 80% yield. The said pyrazoles 6 refluxed with 80% hydrazine hydrate using absolute alcohol as solvent for about 2-3 hours to produce the respective 5-methyl-1,3-diphenyl-1H-pyrazole-4-carboxylic acid hydrazide 7. The alcoholic solution of pyrazole acid hydrazides on heating with ethyl acetoacetate 5 to give the 5-methyl-2-(5-methyl-1,3-diphenyl-1H-pyrazole-4-carbonyl)-2,4-dihydro-pyrazol-3-one 8. The synthesized compounds were found to exhibit good antimicrobial and antioxidant activity as evaluated by 1,1-diphenyl-2-picryl Hydrazyl (DPPH) radical scavenging, reducing power and DNA protection assays.

Synthesis of novel 1,3,4-oxadiazole derivatives as potential antimicrobial agents

Acta Pol Pharm 2010 May-Jun;67(3):247-53.PMID:20524426doi

Some new 3-acetyl-5-(3-chloro-1-benzo[b]thiophen-2-yl)-2-substituted phenyl-2,3-dihydro-1,3,4-oxadiazoles and 2-(3-chloro-1-benzo[b]thiophen-2-yl)-5-substituted phenyl-1,3,4-oxadiazoles have been synthesized and evaluated for antimicrobial activity. Initially, 3-chloro-1-benzo[b]thiophene-2-carbonyl chloride (1) was prepared from cinnamic acid in the presence of chlorobenzene and thionyl chloride. This compound (1) was treated with hydrazine hydrate to afford 3-chloro-1-benzo[b]thiophene-2-carbohydrazine (2) which was further reacted with various aromatic aldehydes to yield hydrazones (3a-h). Further reaction of these hydrazones (3a-h) with acetic anhydride gave 3-acetyl-5-(3-chloro-1-benzo[b]thiophen-2-yl)-2-substituted phenyl-2,3-dihydro-1,3,4-oxadiazoles (4a-h). Reaction of the same compounds (3a-h) in the presence of Chloramine-T afforded 2-(3-chloro-1-benzo[b]thiophen-2-yl)-5-substituted phenyl-1,3,4-oxadiazoles (5a-h). The structures of newly synthesized compounds (4a-h) and (5a-h) have been confirmed by spectroscopic techniques such as IR, 1H NMR and elemental analysis. All the compounds were screened for their antibacterial activities against Staphylococcus aureus, Bacillus subtilis. Escherichia coli and Pseudomonas aeruginosa and for antifungal activity against Candida albicans and Asperigillus niger. The compounds exhibited significant antibacterial and moderate antifungal activities. Compounds 4c and 4e were found to be most potent with activities, even better than standard drug ciprofloxacin against S. aureus and B. subtilis.

SPECT of Transplanted Islets of Langerhans by Dopamine 2 Receptor Targeting in a Rat Model

Mol Pharm 2016 Jan 4;13(1):85-91.PMID:26607139DOI:10.1021/acs.molpharmaceut.5b00518.

Pancreatic islet transplantation can be a more permanent treatment for type 1 diabetes compared to daily insulin administration. Quantitative and longitudinal noninvasive imaging of viable transplanted islets might help to further improve this novel therapy. Since islets express dopamine 2 (D2) receptors, they could be visualized by targeting this receptor. Therefore, the D2 receptor antagonist based tracer [(125/123)I][IBZM] was selected to visualize transplanted islets in a rat model. BZM was radioiodinated, and the labeling was optimized for position 3 of the aromatic ring. [(125)I]-3-IBZM was characterized in vitro using INS-1 cells and isolated islets. Subsequently, 1,000 islets were transplanted in the calf muscle of WAG/Rij rats and SPECT/CT images were acquired 6 weeks after transplantation. Finally, the graft containing muscle was dissected and analyzed immunohistochemically. Oxidative radioiodination resulted in 3 IBZM isomers with different receptor affinities. The use of 0.6 mg/mL Chloramine-T hydrate resulted in high yield formation of predominantly [(125)I]-3-IBZM, the isomer harboring the highest receptor affinity. The tracer showed D2 receptor mediated binding to isolated islets in vitro. The transplant could be visualized by SPECT 6 weeks after transplantation. The transplants could be localized in the calf muscle and showed insulin and glucagon expression, indicating targeting of viable and functional islets in the transplant. Radioiodination was optimized to produce high yields of [(125)I]-3-IBZM, the isomer showing optimal D2R binding. Furthermore, [(123)I]IBZM specifically targets the D2 receptors on transplanted islets. In conclusion, this tracer shows potential for noninvasive in vivo detection of islets grafted in the muscle by D2 receptor targeting.

Synthesis and evaluation of antioxidant and antibacterial activities of new substituted bis(1,3,4-oxadiazoles), 3,5-bis(substituted) pyrazoles and isoxazoles

Bioorg Med Chem Lett 2011 Jun 15;21(12):3536-40.PMID:21612921DOI:10.1016/j.bmcl.2011.04.142.

Two series of five membered heterocyclic bis(1,3,4-oxadiazole) derivatives 2(a-h) and 3,5-bis(substituted)pyrazoles, isoxazoles 3(a,b,d-i), 4(a-c) were synthesized via oxidative cyclization of some diaroylhydrazones using Chloramine-T and cyclocondensation reaction with hydrazine hydrate and hydroxylamine hydrochloride, respectively. The newly synthesized compounds were screened for antioxidant and anti-microbial activities. Compounds 2(b), 3(b), and 4(a) showed higher antioxidant activity at 10 μg/ml while compounds 2(a), 3(a), 3(f), and 4(a) exhibited better anti-microbial activity at 100μg/ml compared with standard vitamin C and ciprofloxacin, respectively. Structures of newly synthesized compounds were confirmed by elemental analysis and spectral IR, (1)H NMR, and (13)C NMR data.