Home>>Signaling Pathways>> Others>> Others>>Cephalosporin C zinc salt

Cephalosporin C zinc salt Sale

(Synonyms: 头孢菌素C锌盐) 目录号 : GC31771

A cephalosporin antibiotic

Cephalosporin C zinc salt Chemical Structure

Cas No.:59143-60-1

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥785.00
现货
10mg
¥714.00
现货
50mg
¥1,607.00
现货
100mg
¥2,499.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Cephalosporin C is a fungal metabolite and cephalosporin antibiotic that has been found in Cephalosporium.1 It is active against a variety of bacteria, including S. pyogenes, C. diphtheriae, E. coli, and H. influenzae (MICs = 31, 15.6, 125, and 31 ?g/ml, respectively), as well as clinical isolates of N. gonorrhoeae (MICs = 1.9-15.6 ?g/ml).2 Formulations containing cephalosporin C have been used in the treatment of various bacterial infections.

1.Newton, G.G., and Abaham, E.P.Cephalosporin C, a new antibiotic containing sulphur and D-alpha-aminoadipic acidNature175(4456)548(1955) 2.Jago, M., and Heatley, N.G.Some biological properties of cephalosporin C and a derivativeBr. J. Pharmacol. Chemother.16(2)170-179(1961)

Chemical Properties

Cas No. 59143-60-1 SDF
别名 头孢菌素C锌盐
Canonical SMILES CC(OCC1=C(C([O-])=O)N(C([C@H]2NC(CCC[C@@H](N)C([O-])=O)=O)=O)[C@]2([H])SC1)=O.[Zn+2]
分子式 C16H19N3O8SZn 分子量 478.78
溶解度 DMSO : 6 mg/mL (12.53 mM; ultrasonic and warming and adjust pH to 2-3 with HCl) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0886 mL 10.4432 mL 20.8864 mL
5 mM 0.4177 mL 2.0886 mL 4.1773 mL
10 mM 0.2089 mL 1.0443 mL 2.0886 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum

Cephalosporins are currently the most widely used antibiotics in clinical practice. The main strain used for the industrial production cephalosporin C (CPC) is Acremonium chrysogenum. CPC has the advantages of possessing a broad antibacterial spectrum and strong antibacterial activity. However, the yield and titer of cephalosporins obtained from A. chrysogenum are much lower than penicillin, which is also a 汕-lactam antibiotic produced by Penicillium chrysogenum. Molecular biology research into A. chrysogenum has focused on gene editing technologies, multi-omics research which has provided information on the differences between high- and low-yield strains, and metabolic engineering involving different functional genetic modifications and hierarchical network regulation to understand strain characteristics. Furthermore, optimization of the fermentation process is also reviewed as it provides the optimal environment to realize the full potential of strains. Combining rational design to control the metabolic network, high-throughput screening to improve the efficiency of obtaining high-performance strains, and real-time detection and controlling in the fermentation process will become the focus of future research in A. chrysogenum. This minireview provides a holistic and in-depth analysis of high-yield mechanisms and improves our understanding of the industrial value of A. chrysogenum. KEY POINTS: ? Review of the advances in A. chrysogenum characteristics improvement and process optimization ? Elucidate the molecular bases of the mechanisms that control cephalosporin C biosynthesis and gene expression in A. chrysogenum ? The future development trend of A. chrysogenum to meet industrial needs.

Multipoint TvDAAO Mutants for Cephalosporin C Bioconversion

d-amino acid oxidase (DAAO, EC 1.4.3.3) is used in many biotechnological processes. The main industrial application of DAAO is biocatalytic production of 7-aminocephalosporanic acid from cephalosporin C with a two enzymes system. DAAO from the yeast Trigonopsis variabilis (TvDAAO) shows the best catalytic parameters with cephalosporin C among all known DAAOs. We prepared and characterized multipoint TvDAAO mutants to improve their activity towards cephalosporin C and increase stability. All TvDAAO mutants showed better properties in comparison with the wild-type enzyme. The best mutant was TvDAAO with amino acid changes E32R/F33D/F54S/C108F/M156L/C298N. Compared to wild-type TvDAAO, the mutant enzyme exhibits a 4 times higher catalytic constant for cephalosporin C oxidation and 8- and 20-fold better stability against hydrogen peroxide inactivation and thermal denaturation, respectively. This makes this mutant promising for use in biotechnology. The paper also presents the comparison of TvDAAO catalytic properties with cephalosporin C reported by others.

Cephalosporin C acylase: dream and(/or) reality

Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.

The Biosynthesis of Penicillin and Cephalosporin C are Regulated by ROS at Transcriptional Level

In a recent work we showed that, besides lovastatin, ROS also accumulate during the production phase in Pencillium chrysogenum and in Acremonium chrysogenum, and that these ROS regulate the biosynthesis of penicillin and cephalosporin C. In the present study, we investigated the level at which this positive regulation is exerted. Internal ROS levels were manipulated, i.e., increased or decreased, in the production phase of the respective fermentations. Penicillin production decreased by 51.2% when internal ROS concentration was diminished by 50%, while a 62% production increase was observed when ROS were increased (62%). Similarly, Cephalosporin production decreased (35%) with antioxidants and increased (54.1%) with exogenous ROS. Expression analysis of the respective pcbAB genes, encoding the non-ribosomal peptide synthetase enzymes, was performed. Results showed down regulation of these genes in fermentations with lower ROS content, and upregulation in the cultures with higher ROS content, in both species. This showed that ROS regulation of penicillin in P. chrysogenum and of cephalosporin C in A. chrysogenum, is exerted at transcriptional level. In silico analysis of the pcbAB gene promoters in both species, suggested that this regulation could be mediated by stress-response transcription factors like Yap1, SrrA and/or MsnA, and/or by the Hap complex.

Degradation of antibiotic Cephalosporin C in different water matrices by ionizing radiation: Degradation kinetics, pathways, and toxicity

Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10-200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42-, NO3-, and HCO3-, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy-1 respectively in the presence of SO42-, NO3-, and HCO3-. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, 汕-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-汐-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater.