Home>>Lipids>> Sphingolipids>>C18 Sphingomyelin (d18:1/18:0)

C18 Sphingomyelin (d18:1/18:0)

(Synonyms: N-Octadecanoyl Sphingosylphosphorylcholine, SM(d18:1/18:0), Sphingomyelin (d18:1/18:0), N-Octadecanoyl Sphingosylphosphorylcholine SM(d18:1/18:0) Sphingomyelin (d18:1/18:0), Stearoyl Sphingomyelin) 目录号 : GC43053

A bioactive sphingolipid

C18 Sphingomyelin (d18:1/18:0) Chemical Structure

Cas No.:54336-69-5

规格 价格 库存 购买数量
5mg
¥4,779.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

C18 Sphingomyelin is a naturally occurring form of sphingomyelin. C18 Sphingomyelin is increased by approximately 35-fold in CCD-112 colon fibroblasts compared with HCT116 human colorectal carcinoma cells.[1] C18 Sphingomyelin has been used as an internal standard for the quantification of sphingolipid metabolites.[2] This product is a mixture of the D-erythro and L-threo isomers of C18 sphingomyelin. 

Reference:
[1]. del Solar, V., Lizardo, D.Y., Li, N., et al. Differential regulation of specific sphingolipids in colon cancer cells during staurosporine-induced apoptosis. Chem. Biol. 22(12), 1662-1670 (2015).
[2]. Mano, N., Oda, Y., Yamada, K., et al. Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal. Biochem. 244(2), 291-300 (1997).

Chemical Properties

Cas No. 54336-69-5 SDF
别名 N-Octadecanoyl Sphingosylphosphorylcholine, SM(d18:1/18:0), Sphingomyelin (d18:1/18:0), N-Octadecanoyl Sphingosylphosphorylcholine SM(d18:1/18:0) Sphingomyelin (d18:1/18:0), Stearoyl Sphingomyelin
化学名 4-hydroxy-7-(1-hydroxy-2-hexadecen-1-yl)-N,N,N-trimethyl-9-oxo-3,5-dioxa-8-aza-4-phosphahexacosan-1-aminium, 4-oxide, inner salt
Canonical SMILES O=C(CCCCCCCCCCCCCCCCC)NC(COP(OCC[N+](C)(C)C)([O-])=O)C(O)/C=C/CCCCCCCCCCCCC
分子式 C41H83N2O6P 分子量 731.1
溶解度 Soluble in ethanol, DMSO, DMF 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.3678 mL 6.839 mL 13.678 mL
5 mM 0.2736 mL 1.3678 mL 2.7356 mL
10 mM 0.1368 mL 0.6839 mL 1.3678 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Prediction of response and adverse drug reaction of pemetrexed plus platinum-based chemotherapy in lung adenocarcinoma by serum metabolomic profiling

Transl Oncol 2022 May;19:101393.PMID:35290920DOI:PMC8918859

Background: Pemetrexed plus platinum doublet chemotherapy regimen remains to be the standard first-line treatment for lung adenocarcinoma patients. However, few biomarkers can be used to identify potential beneficiaries with maximal efficacy and minimal toxicity. This study aimed to explore potential biomarker models predictive of efficacy and toxicity after pemetrexed plus platinum chemotherapy based on metabolomics profiling. Methods: A total of 144 patients who received at least two cycles of pemetrexed plus platinum chemotherapy were enroled in the study. Serum samples were collected before initial treatment to perform metabolomics profiling analysis. Logistic regression analysis was performed to establish prediction models. Results: 157 metabolites were found to be differentially expressed between the response group and the nonresponse group. A panel of Phosphatidylserine 20:4/20:1, Sphingomyelin d18:1/18:0, and Phosphatidic Acid 18:1/20:0 could predict pemetrexed and platinum chemotherapy response with an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.7968. 76 metabolites were associated with hematological toxicity of pemetrexed plus platinum chemotherapy. A panel incorporating triglyceride 14:0/22:3/22:5, 3-(3-Hydroxyphenyl) Propionate Acid, and Carnitine C18:0 was the best predictive ability of hematological toxicity with an AUROC of 0.7954. 54 differential expressed metabolites were found to be associated with hepatotoxicity of pemetrexed plus platinum chemotherapy. A model incorporating stearidonic acid, Thromboxane B3, l-Homocitrulline, and phosphoinositide 20:3/18:0 showed the best predictive ability of hepatotoxicity with an AUROC of 0.8186. Conclusions: This study established effective and convenient models that can predict the efficacy and toxicity of pemetrexed plus platinum chemotherapy in lung adenocarcinoma patients before treatment delivery.