C12-200
目录号 : GC64081
C12-200是一种可电离的阳离子类脂质,常作为核酸递送载体。
Cas No.:1220890-25-4
Sample solution is provided at 25 µL, 10mM.
C12-200 is an ionizable cationic lipidoid commonly utilized as a nucleic acid delivery vehicle[1]. C12-200 possesses unique ionization properties, enabling it to bind with negatively charged nucleic acid molecules, such as mRNA, under physiological conditions to form stable complexes. This facilitates efficient nucleic acid encapsulation and promotes cytosolic delivery, making it applicable in drug delivery, vaccine development, and gene therapy, particularly suited for mRNA vaccine delivery systems[2-4].
In vitro, pretreatment of rat dorsal root ganglion (DRG) neurons, rat primary cortical neurons, and the human cortical neuron cell line (HCN-2) with C12-200 lipid nanoparticles (LNPs) at 50nM for 4–24 hours significantly enhanced siRNA cellular uptake efficiency while maintaining high cell viability[5]. Co-incubation of ARPE-19 cells and MIO-M1 Müller glial cells with C12-200 LNPs (loaded with 1μg mRNA or 0.2–1μg saRNA) for 24 hours increased enhanced green fluorescent protein (eGFP) expression levels in the cells[6].
In vivo, administration of C12-200 LNPs (1mg mRNA/kg) via intraperitoneal or intravenous injection in 6-8-week-old female C57BL/6 mice significantly altered the biodistribution pattern of mRNA. Compared to the cholesterol-based benchmark LNP (S2), C12-200 LNPs exhibited strong liver tropism[7]. Additionally, intraperitoneal injection of C12-200 LNPs (1mg/kg siRNA-Cy5.5) in 8-12-week-old Balb/c mice significantly enhanced the uptake of Cy5.5-labeled siRNA in GATA6+ large peritoneal macrophages (LPMs) and induced the migration of LPMs to the lung tissue via systemic circulation within 12-24 hours following clodronate-mediated depletion of alveolar macrophages (AMs)[8].
References:
[1] Reinhart AG, Osterwald A, Ringler P, et al. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Mol Pharm. 2023 Dec 4;20(12):6492-6503.
[2] Barbieri BD, Peeler DJ, Samnuan K, et al. The role of helper lipids in optimising nanoparticle formulations of self-amplifying RNA. J Control Release. 2024 Oct;374:280-292.
[3] Kauffman KJ, Dorkin JR, Yang JH, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015 Nov 11;15(11):7300-6.
[4] Labonia MCI, Estapé Senti M, et al. Cardiac delivery of modified mRNA using lipid nanoparticles: Cellular targets and biodistribution after intramyocardial administration. J Control Release. 2024 May;369:734-745.
[5] Khare P, Dave KM, Kamte YS, et al. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. AAPS J. 2021 Dec 6;24(1):8.
[6] Li W, Vanluchene H, Raes L, et al. Efficacy versus immunogenicity of LNP-mediated delivery of mRNA and self-amplifying RNA upon intravitreal injection in the mouse eye. J Control Release. 2025 Sep 10;385:114027.
[7] Patel SK, Billingsley MM, Mukalel AJ, et al. Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery. Theranostics. 2024 Jan 1;14(1):1-16.
[8] Oza D, Ivich F, Pace J, et al. Lipid nanoparticle encapsulated large peritoneal macrophages migrate to the lungs via the systemic circulation in a model of clodronate-mediated lung-resident macrophage depletion. Theranostics. 2024 Apr 8;14(6):2526-2543.
C12-200是一种可电离的阳离子类脂质,常作为核酸递送载体[1]。C12-200具有独特的电离性质,能够在生理条件下与带负电荷的mRNA等核酸分子结合形成稳定复合物,从而有效封装核酸并促进其进入细胞质,可应用于药物传递、疫苗开发和基因治疗领域,尤其适用于mRNA疫苗的递送系统[2-4]。
在体外,C12-200脂质纳米颗粒(LNPs)以50nM预处理大鼠背根神经节(DRG)神经元、大鼠原代皮质神经元及人皮质神经元细胞系(HCN-2)4–24小时,显著提高siRNA的细胞摄取效率,同时维持高细胞存活率[5]。C12-200(1μg mRNA或0.2–1μg saRNA)负载的脂质纳米颗粒与ARPE-19细胞及MIO-M1米勒胶质细胞共孵育24小时,提高细胞中eGFP表达水平[6]。
在体内,C12-200 LNPs(1mg mRNA/kg)通过腹腔注射或静脉注射处理6-8周龄雌性C57BL/6小鼠,显著改变了mRNA的体内分布模式,与胆固醇基准LNP(S2)相比,C12-200 LNPs表现出强烈的肝脏趋向性[7]。C12-200 LNPs(1mg/kg siRNA-Cy5.5)通过腹腔注射处理8-12周龄Balb/c小鼠,显著增强Cy5.5标记的siRNA在GATA6+大腹膜巨噬细胞(LPMs)中的摄取,并诱导LPMs在氯膦酸盐介导的肺泡巨噬细胞(AMs)清除后12-24小时内通过体循环迁移至肺组织[8]。
siRNA脂质体的制备
本方案仅供参考,应根据您的具体需求进行修改。
(1)脂质/乙醇相制备: 将脂质组分以50/10/38.5/1.5的摩尔比(C12-200 / DSPC / 胆固醇 / PEG-DMG)溶解在乙醇中。
(2)水相制备: 在10 mM柠檬酸盐缓冲液(pH=4.0)中制备1mg/mL的siRNA溶液。
(3)通过快速混合法形成siRNA脂质体:在持续涡旋混合下,将脂质/乙醇相的整个体积在30秒内逐滴加入到水相中。将混合物再次涡旋混合30秒。向siRNA脂质体中加入预先计算好体积的1X PBS(pH=7.4),将最终siRNA浓度调整至所需水平。将可电离阳离子类脂质(C12-200)与siRNA的重量比(w/w)维持在5:1。
注意事项:
(1)在适用的情况下保持无菌操作技术以防止污染。
(2)制备的脂质体不使用时应在2-8°C下储存。随时间推移监测其胶体稳定性。
References:
[1] Khare P, Dave KM, Kamte YS, et al. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. AAPS J. 2021 Dec 6;24(1):8.
| Cas No. | 1220890-25-4 | SDF | Download SDF |
| 分子式 | C70H145N5O5 | 分子量 | 1136.93 |
| 溶解度 | DMSO : 100 mg/mL (87.96 mM; Need ultrasonic) | 储存条件 | Store at -20°C,protect from light |
| General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
| Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 | ||
| 制备储备液 | |||
![]() |
1 mg | 5 mg | 10 mg |
| 1 mM | 879.6 μL | 4.3978 mL | 8.7956 mL |
| 5 mM | 175.9 μL | 879.6 μL | 1.7591 mL |
| 10 mM | 88 μL | 439.8 μL | 879.6 μL |
| 第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
| 给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
| 第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
| % DMSO % % Tween 80 % saline | ||||||||||
| 计算重置 | ||||||||||
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
















