Home>>Lipids>> Cyclooxygenase>>Butaprost (free acid)

Butaprost (free acid)

(Synonyms: (±)15deoxy16Shydroxy17cyclobutyl PGE1, 15deoxy16Shydroxy17cyclobutyl PGE1) 目录号 : GC42995

An EP2-selective prostaglandin E2 analog

Butaprost (free acid) Chemical Structure

Cas No.:433219-55-7

规格 价格 库存 购买数量
500μg
¥1,456.00
现货
1mg
¥2,775.00
现货
5mg
¥11,649.00
现货
10mg
¥20,386.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Butaprost is an EP2 selective agonist which has frequently been used to pharmacologically define the EP receptor expression profile of various human and animal tissues and cells. Prostaglandin free acids generally bind to their cognate receptors with 10 to 100 times the affinity of the corresponding ester derivative. Consistent with this trend, butaprost binds to membranes from EP2 receptor-transfected CHO cells with a Ki value of 2,400 nM, whereas butaprost (free acid) and CAY10399 (the 2-series congener of butaprost free acid) exhibit significantly lower Ki values of 73 and 92 nM, respectively. Butaprost (free acid) is therefore another useful tool for characterizing EP receptor-mediated signalling events.

Chemical Properties

Cas No. 433219-55-7 SDF
别名 (±)15deoxy16Shydroxy17cyclobutyl PGE1, 15deoxy16Shydroxy17cyclobutyl PGE1
Canonical SMILES CCCC1(CCC1)[C@@H](O)C/C=C/[C@H]([C@H]2CCCCCCC(O)=O)[C@H](O)CC2=O
分子式 C23H38O5 分子量 394.6
溶解度 DMF: 25 mg/ml,DMSO: 25/mg/ml,Ethanol: 50 mg/ml,PBS (pH 7.2): 100 µ g/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5342 mL 12.6711 mL 25.3421 mL
5 mM 0.5068 mL 2.5342 mL 5.0684 mL
10 mM 0.2534 mL 1.2671 mL 2.5342 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The localization of PGE2 receptor subtypes in rat retinal cultures and the neuroprotective effect of the EP2 agonist Butaprost

Neurochem Int 2009 Sep;55(4):199-207.PMID:19524109DOI:10.1016/j.neuint.2009.02.015.

It is concluded from immunohistochemical that all four types of prostaglandin-E(2) (PGE(2)) (EP1, EP2, EP3 and EP4) receptors are associated with specific cell-types in primary rat retinal cultures. Analysis specifically of EP2 receptor immunoreactivity shows it to coexist with some neurones expressing Thy-1 and calbindin immunoreactivities as well as with vimentin-positive Müller cells. Moreover, exposure of cultures to the EP2 specific agonist Butaprost (100 nM) for a period of 24h results in a generation of cAMP thus providing support for the functionality of EP2 receptors. Cell survival was significantly affected in cultures where the serum concentration was reduced from 10 to 1% for 24h. This was reflected by a reduction in the number of GABA-positive neurons and an elevation of released lactate dehydrogenase (LDH) into the culture medium. Moreover, a number of cells displayed a clear generation of reactive oxygen species (ROS) and a staining for the breakdown of DNA by the TUNEL procedure as an indicator for apoptosis. These negative effects were attenuated when Butaprost (100 nM) was present during the serum reduction and 30 min before the insult. The present studies provide evidence to show that all PGE(2) receptor types exist in the retina of rat pups, remain functional when the retinal cells are cultured and that specific activation of EP2 receptors with Butaprost can attenuate a detrimental insult caused by insufficient serum that may occur in situ by reduced trophic support.

Functional pharmacology of human prostanoid EP2 and EP4 receptors

Eur J Pharmacol 2004 Oct 6;501(1-3):49-58.PMID:15464062DOI:10.1016/j.ejphar.2004.08.025.

Prostanoid EP(2) and EP(4) receptor-mediated responses are difficult to distinguish pharmacologically because of the lack of potent, selective antagonists. We describe systematic agonist fingerprints for recombinant human prostanoid EP(2) and EP(4) receptors expressed in CHO and HEK293 cells, respectively. The rank orders of potency of endogenous prostaglandins were: prostanoid EP(2) receptors: prostaglandin E(2)>>prostaglandin D(2)=prostaglandin F(2alpha)>prostaglandin I(2); prostanoid EP(4) receptors: prostaglandin E(2)>>prostaglandin I(2)>prostaglandin D(2)=prostaglandin F(2alpha). Butaprost free acid (9-oxo-11alpha,16R-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic acid) behaved as a highly selective partial agonist at prostanoid EP(2) receptors while Butaprost methyl ester elicited small, low potency responses. The prostanoid EP(1) and EP(3) receptor agonists misoprostol (9-oxo-11alpha,16-dihydroxy-16-methyl-prost-13E-en-1-oic acid, methyl ester), sulprostone (N-(methylsulphonyl)-9-oxo-11alpha,15R-dihydroxy-16-phenoxy-17,18,19,20-tetranor-prosta-5Z,13E-dien-1-amide), and GR63799X ([1R-[1alpha(Z),2beta(R*),3alpha]-(-)-4-benzoylamino)phenyl-7-[3-hydroxy-3-phenoxy-propoxy)-5-oxocyclopentyl]-4-heptenoate), and the prostanoid DP receptor agonist BW245C ((4S)-(3-[(3R,S)-3-cyclohexyl-3-hydropropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid), activated both prostanoid EP(2) and EP(4) receptors. Prostaglandin I(2), iloprost (6,9alpha-methylene-11alpha,15S-dihydroxy-16-methyl-prosta-5E,13E-dien-18-yn-1-oic acid, trometamol salt) and cicaprost (5-[(E)-(1S, 5S, 6S, 7R)-7-hydroxy-6-[(3S, 4S)-3-hydroxy-4-methylnona-1,6-diinyl]-bicyclo[3.3.0]octan-3-yliden]-3-oxapentanoic acid; ZK96480) were full agonists at prostanoid EP(4) receptors. Key differentiating agonists are: Butaprost FA, 16,16-dimethyl-prostaglandin E(2), 19-(R)-hydroxy prostaglandin E(2), misoprostol, BW245C, prostaglandin F(2alpha) and prostaglandin D(2).

Cloning and expression of the rabbit prostaglandin EP2 receptor

BMC Pharmacol 2002 Jun 27;2:14.PMID:12097143DOI:10.1186/1471-2210-2-14.

Background: Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results: The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding with a Kd of 19.1 +/- 1.7 nM. [3H]PGE2 was displaced by unlabeled ligands in the following order: PGE2>>PGD2=PGF2alpha=iloprost. Binding of [3H]PGE2 was also displaced by EP receptor subtype selective agonists with a rank order of affinity consistent with the EP2 receptor (Butaprost>AH13205>misoprostol>sulprostone). Butaprost free acid produced a concentration-dependent increase in cAMP accumulation in rabbit EP2 transfected COS-1 cells with a half-maximal effective concentration of 480 nM. RNase protection assay revealed high expression in the ileum, spleen, and liver with lower expression in the kidney, lung, heart, uterus, adrenal gland and skeletal muscle. In situ hybridization localized EP2 mRNA to the uterine endometrium, but showed no distinct localization in the kidney. EP2 mRNA expression along the nephron was determined by RT-PCR and its expression was present in glomeruli, MCD, tDL and CCD. In cultured cells EP2 receptor was not detected in collecting ducts but was detected in renal interstitial cells and vascular smooth muscle cells. EP2 mRNA was also detected in arteries, veins, and preglomerular vessels of the kidney. Conclusion: EP2 expression pattern is consistent with the known functional roles for cAMP coupled PGE2 effects in reproductive and vascular tissues and renal interstitial cells. It remains uncertain whether it is also expressed in renal tubules.

Cyclooxygenase 2 inhibitor celecoxib inhibits glutamate release by attenuating the PGE2/EP2 pathway in rat cerebral cortex endings

J Pharmacol Exp Ther 2014 Oct;351(1):134-45.PMID:25047516DOI:10.1124/jpet.114.217372.

The excitotoxicity caused by excessive glutamate is a critical element in the neuropathology of acute and chronic brain disorders. Therefore, inhibition of glutamate release is a potentially valuable therapeutic strategy for treating these diseases. In this study, we investigated the effect of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor that reduces the level of prostaglandin E2 (PGE2), on endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Celecoxib substantially inhibited the release of glutamate induced by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by chelating the extracellular Ca(2+) ions and by the vesicular transporter inhibitor bafilomycin A1. Celecoxib inhibited a 4-AP-induced increase in cytosolic-free Ca(2+) concentration, and the celecoxib-mediated inhibition of glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC. However, celecoxib did not alter 4-AP-mediated depolarization and Na(+) influx. In addition, this glutamate release-inhibiting effect of celecoxib was mediated through the PGE2 subtype 2 receptor (EP2) because it was not observed in the presence of Butaprost (an EP2 agonist) or PF04418948 [1-(4-fluorobenzoyl)-3-[[6-methoxy-2-naphthalenyl)methyl]-3-azetidinecarboxylic acid; an EP2 antagonist]. The celecoxib effect on 4-AP-induced glutamate release was prevented by the inhibition or activation of protein kinase A (PKA), and celecoxib decreased the 4-AP-induced phosphorylation of PKA. We also determined that COX-2 and the EP2 receptor are present in presynaptic terminals because they are colocalized with synaptophysin, a presynaptic marker. These results collectively indicate that celecoxib inhibits glutamate release from nerve terminals by reducing voltage-dependent Ca(2+) entry through a signaling cascade involving EP2 and PKA.

Characterization of prostanoid receptors present on adrenergic neurons innervating the porcine uterine longitudinal muscle

Prostaglandins Other Lipid Mediat 2008 Jun;86(1-4):26-34.PMID:18403225DOI:10.1016/j.prostaglandins.2008.02.002.

The cyclooxygenase-prostanoid pathway regulates myometrial contractility through activation of prostanoid receptors on uterine smooth muscles. However, the possible expression of prostanoid receptors on autonomic nerves cannot be excluded completely. The aim of the present study was to clarify the presence of neural prostanoid receptors on adrenergic nerves in the porcine uterine longitudinal muscle. In [(3)H]-noradrenaline-loaded longitudinal muscle strips of porcine uterus, electrical field stimulation (EFS) evoked [(3)H]-noradrenaline release in a stimulation frequency-dependent manner. The EFS-evoked release was completely abolished in Ca(2+)-free (EGTA, 1mM) incubation medium and by tetrodotoxin or omega-conotoxin GVIA, suggesting that [(3)H]-noradrenaline was released from neural components. The EFS-evoked [(3)H]-noradrenaline release was significantly enhanced by treatment with indomethacin. In the presence of indomethacin, PGE(2) and PGF(2alpha), but not PGD(2), inhibited the EFS-evoked [(3)H]-noradrenaline release. Of synthetic prostanoid receptor agonists examined, both U46619 (TP) and sulprostone (EP(1)/EP(3)) decreased the EFS-evoked [(3)H]-noradrenaline release in a concentration-dependent manner, while fluprostenol (FP), BW245C (DP) and Butaprost (EP(2)) were almost ineffective. SQ29548 (TP receptor antagonist) blocked the effect of U46619, but SC19220 (EP(1) receptor antagonist) did not change the inhibition by sulprostone or PGE(2). Double immunofluorescence staining using protein gene product 9.5, tyrosine hydroxylase, EP(3) receptor and TP receptor antibodies suggested the localization of EP(3) or TP receptors on adrenergic nerves in the porcine uterus. These results indicated that neural EP(3) and TP receptors are present on adrenergic nerves of the porcine uterine longitudinal muscle. Endogenous prostanoid produced by cyclooxygenase can regulate noradrenaline release in an inhibitory manner through activation of these neural prostanoid receptors.