Home>>Signaling Pathways>> Others>> Others>>Bisoctrizole

Bisoctrizole Sale

(Synonyms: 紫外光吸收剂UV-360) 目录号 : GC30483

Bisoctrizole (Tinosorb M, Tinuvin-360, UV-360, Milestab-360) is a broad-spectrum ultraviolet radiation absorber, absorbing UVB as well as UVA rays. Also a hybrid UV absorber, reflecting and scattering UV.

Bisoctrizole Chemical Structure

Cas No.:103597-45-1

规格 价格 库存 购买数量
100mg
¥350.00
现货
500mg
¥1,050.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Bisoctrizole (Tinosorb M, Tinuvin-360, UV-360, Milestab-360) is a broad-spectrum ultraviolet radiation absorber, absorbing UVB as well as UVA rays. Also a hybrid UV absorber, reflecting and scattering UV.

Chemical Properties

Cas No. 103597-45-1 SDF
别名 紫外光吸收剂UV-360
Canonical SMILES OC1=C(N2N=C3C(C=CC=C3)=N2)C=C(C(C)(C)CC(C)(C)C)C=C1CC4=CC(C(C)(C)CC(C)(C)C)=CC(N5N=C6C(C=CC=C6)=N5)=C4O
分子式 C41H50N6O2 分子量 658.87
溶解度 DMSO: < 1 mg/mL (insoluble or slightly soluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5178 mL 7.5888 mL 15.1775 mL
5 mM 0.3036 mL 1.5178 mL 3.0355 mL
10 mM 0.1518 mL 0.7589 mL 1.5178 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Vaccinium myrtillus L. extract associated with octocrylene, bisoctrizole, and titanium dioxide: in vitro and in vivo tests to evaluate safety and efficacy

Objective: The harmful effects induced by ultraviolet exposition and the significant increment in skin cancer diagnosis confirm the necessity to develop effective and safe sunscreens. Limited efficacy and cutaneous adverse reactions of traditional formulations drove the incorporation of natural extracts into multifunctional sunscreens. Vaccinium myrtillus L. extract (VME), that contains anthocyanins and flavonoids, is a potential candidate for such systems. Methods: Considering that, we performed in vitro and in vivo tests to evaluate the sun protection factor (SPF), photostability, and safety of sunscreen samples containing VME. Results: As main results, the SPF was reduced in both in vitro and in vivo evaluation in the presence of VME; nonetheless, the samples were photostable and safe. Conclusion: Further investigation is required to better understand the unexpected effects of VME over photoprotection, decreasing the SPF value. As a conclusion, even with interesting findings, we highlight the importance of case-by-case investigations to develop multifunctional bioactive sunscreens.

Drug Repurposing Against Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Through Computational Approach

Ongoing novel coronavirus (COVID-19) with high mortality is an infectious disease in the world which epidemic in 2019 with human-human transmission. According to the literature, S-protein is one of the main proteins of COVID-19 that bind to the human cell receptor angiotensin-converting enzyme 2 (ACE2). In this study, it was attempted to identify the main effective drugs approved that may be repurposed to the binding site of ACE2. High throughput virtual screening based on the docking study was performed to know which one of the small-molecules had a potential interaction with ACE2 structure. Forasmuch as investigating and identifying the best ACE2 inhibitors among more than 3,500 small-molecules is time-consuming, supercomputer was utilized to apply docking-based virtual screening. Outputs of the proposed computational model revealed that vincristine, vinbelastin and bisoctrizole can significantly bind to ACE2 and may interface with its normal activity.

Evaluation of photodegradation, phototoxicity and photogenotoxicity of ofloxacin in ointments with sunscreens and in solutions

Fluoroquinolones are widely used anti-bacterial agents that are known to exhibit moderate to severe phototoxicity. Furthermore some of them reveal photogenotoxicity under UV irradiation. Incidence of side effects due to light exposure may be augmented, if the medicament is used topically. The main goal of this work was to compare the extent of photodegradation of ofloxacin in ointments with various excipients: hydrated or non-hydrated base and the addition of sunscreens: bisoctrizole (Tinosorb M) and bemotrizinol (Tinosorb S). The next goal of present work was the analysis of phototoxicity and photogenotoxicity of ofloxacin photodegradation products in tested ointments and in solutions with the umu-test, the test of mitotic gene conversion with Saccharomyces cerevisiae D7 and the micronucleus assay with V79 Chinese hamster cell line. At the same time an attempt was made to determinate the photodegradation products of ofloxacin in different unguents variants. We observed a significant photoprotective effect in ointment with Tinosorb M. We did not evaluated relevant differences regarding the genotoxicity and toxicity of unguents. However, the pre-irradiated ofloxacin solutions in comparison to samples stored in the dark were significantly more genotoxic to bacteria, slightly increased the number of micronuclei in V79 cell line and were toxic to the yeast strain.

In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease

The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.

Simultaneous analysis and monitoring of 16 UV filters in cosmetics by high-performance liquid chromatography

Sixteen UV filters were simultaneously analyzed using the high-performance liquid chromatographic method. They were drometrizole (USAN Drometrizole), 4-methylbenzylidene camphor (USAN Enzacamene), menthyl anthranilate (USAN Menthyl anthranilate), benzophenone-3 (USAN Oxybenzone), benzophenone-8 (USAN Dioxybenzone), butyl methoxydibenzoylmethane (USAN Avobenzone), ethylhexyl triazone (USAN Octyl triazone), octocrylene (USAN Octocrylene), ethylhexyl dimethyl p-aminobenzoic acid (USAN Padimate O), ethylhexyl methoxycinnamate (USAN Octinoxate), p-aminobenzoic acid (USAN Aminobenzoic acid), 2-phenylbenzimidazole-5-sulfonic acid (USAN Ensulizole), isoamyl p-methoxycinnamate (USAN Amiloxate), and recent UV filters such as diethylhexyl butamidotriazone (USAN Iscotrizinol), methylene bis-benzotriazolyl tetramethylbutylphenol (USAN Bisoctrizole), and terephthalylidene dicamphor sulfonic acid (USAN Ecamsule). Separation of the UV filters was carried out in a C(18) column with a gradient of methanol-phosphate buffer, and the UV detection was at 300, 320, or 360 nm without any interference. The limits of detection were between 0.08 and 1.94 μg/ml, and the limits of quantitation were between 0.24 and 5.89 μg/ml. The extracting solvent for the UV filters was methanol, except for ethylhexyl triazone and methylene bis-benzotriazolyl tetramethylbutylphenol, which were prepared with tetrahydrofuran. The recoveries from spiked samples were between 94.90% and 116.54%, depending on the matrixes used. The developed method was applied to 23 sunscreens obtained from local markets, and the results were acceptable to their own criteria and to maximum authorized concentrations. Consequently, these results would provide a simple extracting method and a simultaneous determination for various UV filters, which can improve the quality control process as well as the environmental monitoring of sunscreens.