Home>>Natural Products>>BCECF (2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein)

BCECF (2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein) Sale

(Synonyms: 2,7-双(2-羧乙基)-5(6)-羧基荧光素,2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein) 目录号 : GC30270

A fluorescent pH probe

BCECF (2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein) Chemical Structure

Cas No.:85138-49-4

规格 价格 库存 购买数量
1mg
¥1,160.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

The cells are palced in a petri dish and BCECF present in trichomonads is fixed for electron microsopy. Controns without BCECF loading, without DAB treatment, and without UV illumination are run in parallel. Trichomonads remaine viable during the procedure, except that without BCECF they are dead and disrupted by 4 h. Then the cell are lysed. After lysis, BCECF is added to the lysate to 20 μM, and the lysate is incubated,followed by 3 washes in lysis buffer to remove free dye and resuspension of the pellet in the original volume[1].

References:

[1]. Scott DA, et al. Analysis of the uptake of the fluorescent marker 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) by hydrogenosomes in Trichomonas vaginalis. Eur J Cell Biol. 1998 Jun;76(2):139-45.

产品描述

BCECF is a fluorescent probe commonly used to measure pH.1 It is a dual-excitation ratiometric pH indicator with a pKa of ~6.98. Measurements of pH are made by determining the ratio of emission intensity, detected at 535 nm, when excited at 490 nm versus the emission intensity when excited at 440 nm.1 BCECF is membrane impermeable, whereas the acetoxymethyl ester, BCEBF-AM is membrane permeant.

1.O'Connor, N., and Silver, R.B.Ratio imaging: Practical considerations for measuring intracellular Ca2+ and pH in living cellsMethods Cell Biol.81415-433(2007)

Chemical Properties

Cas No. 85138-49-4 SDF
别名 2,7-双(2-羧乙基)-5(6)-羧基荧光素,2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein
Canonical SMILES O=C(O)CCC1=CC(C23OC(C4=C2C=CC(C(O)=O)=C4)=O)=C(OC5=C3C=C(CCC(O)=O)C(O)=C5)C=C1O.O=C(O)CCC6=CC(C78OC(C9=C7C=C(C(O)=O)C=C9)=O)=C(OC%10=C8C=C(CCC(O)=O)C(O)=C%10)C=C6O
分子式 C27H20O11 分子量 520.44
溶解度 DMSO : 62.5 mg/mL (120.09 mM);Water : < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9215 mL 9.6073 mL 19.2145 mL
5 mM 0.3843 mL 1.9215 mL 3.8429 mL
10 mM 0.1921 mL 0.9607 mL 1.9215 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Drug efflux transport properties of 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and its fluorescent free acid, BCECF

2',7'-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) is a fluorescent probe used to examine multidrug resistance-associated protein (MRP) transporter activity in cells. BCECF is introduced into the cell as the nonfluorescent membrane permeable acetoxymethyl ester, BCECF-AM, where it is hydrolyzed to the membrane impermeable BCECF. The lipophilic nature of BCECF-AM suggests it may be a substrate for other drug efflux transporters such as P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP). To assess the drug efflux transporter interactions of BCECF-AM and BCECF, accumulation studies were examined in various drug efflux-expressing cells. Inhibition of P-gp, BCRP, and/or MRP produced distinct changes in the time-dependent accumulation of BCECF in the cells. Treatment with GF120918 produced an immediate and sustained effect throughout the entire time course examined. Fumitremorgin C only affected BCECF accumulation at the early time points, whereas the impact of indomethacin on BCECF accumulation was observed only at the latter time points. Permeability studies in bovine brain microvessel endothelial cells indicated an increased basolateral-to-apical transport of BCECF, which could be reduced in the presence of either indomethacin or GF120918. These results indicate that the intracellular accumulation and transcellular permeability of BCECF are sensitive to a variety of drug efflux interactions. These results likely reflect an interaction of the ester form with P-gp and BCRP during the initial accumulation process, and an interaction of the free acid form with MRP after hydrolysis in the cell.

Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments

Monocarboxylate transporter 4 (MCT4) is an H+-coupled symporter highly expressed in metastatic tumors and at inflammatory sites undergoing hypoxia or the Warburg effect. At these sites, extracellular lactate contributes to malignancy and immune response evasion. Intriguingly, at 30-40 mm, the reported Km of MCT4 for lactate is more than 1 order of magnitude higher than physiological or even pathological lactate levels. MCT4 is not thought to transport pyruvate. Here we have characterized cell lactate and pyruvate dynamics using the FRET sensors Laconic and Pyronic. Dominant MCT4 permeability was demonstrated in various cell types by pharmacological means and by CRISPR/Cas9-mediated deletion. Respective Km values for lactate uptake were 1.7, 1.2, and 0.7 mm in MDA-MB-231 cells, macrophages, and HEK293 cells expressing recombinant MCT4. In MDA-MB-231 cells MCT4 exhibited a Km for pyruvate of 4.2 mm, as opposed to >150 mm reported previously. Parallel assays with the pH-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) indicated that previous Km estimates based on substrate-induced acidification were severely biased by confounding pH-regulatory mechanisms. Numerical simulation using revised kinetic parameters revealed that MCT4, but not the related transporters MCT1 and MCT2, endows cells with the ability to export lactate in high-lactate microenvironments. In conclusion, MCT4 is a high-affinity lactate transporter with physiologically relevant affinity for pyruvate.

Analysis of the uptake of the fluorescent marker 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) by hydrogenosomes in Trichomonas vaginalis

The fluorescent dye 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) has been widely used as an indicator of cytosolic pH. Here we report that BCECF localizes to hydrogenosomes (hydrogen-generating organelles found in several phylogenetically separate groups of anaerobic protists) in Trichomonas vaginalis, where it was observable by fluorescence microscopy. Its cellular location was confirmed by treatment of BCECF-loaded cells with diaminobenzidine and hydrogen peroxide together with UV illumination. This produced an osmiophilic precipitate in the matrix of hydrogenosomes, observable by electron microscopy. Use of a short (7.5 min) loading period, loading on ice, use of concentrations of BCECF (acetoxymethyl ester) down to 10 nM, and inclusion of the anion channel blockers probenicid or sulfinpyrazone, or the K+/H+ ionophore nigericin in the loading buffer all failed to prevent hydrogenosomal accumulation of BCECF. This uptake was best observed when intact cells were loaded with the ester form of BCECF, but could also be seen using free BCECF following either incubation with ruptured cells or electroporation of intact cells. Hydrogenosomal BCECF loading was also obtained with washed cell lysates, without cytoplasm or metabolic substrates. We tested a range of other fluorogenic dyes designed for cytosolic labeling, and found that the calcium indicator fura-2 (acetoxymethyl ester) and the cell viability marker fluorescein diacetate also labeled hydrogenosomes. The results illustrate a novel use for BCECF as a fluorescent marker for hydrogenosomes (the first such marker), but present a warning against the indiscriminate use of fluorogenic ester dyes to measure properties of the cytosol in hydrogenosome-containing organisms - the dyes may also be indicating the properties of the hydrogenosome.

In situ calibration of fura-2 and BCECF fluorescence in adult rat ventricular myocytes

Quantitation of Ca+ and H+ activities within cells using presently available fluorescent probes is optimal when the fluorescence signal is calibrated in situ after each experiment. Fura-2 and 2',7'-bis(2-carboxy-ethyl)-5,6-carboxyfluoroscein (BCECF) are difficult to calibrate in freshly dissociated adult cardiac myocytes because calibration procedures produce cellular hypercontracture. In situ calibration was accomplished in rat ventricular cells by saturating fura-2 with La3+, an agent known to produce myocardial relaxation. Since fura-2 has different spectral properties when complexed with La3+ than with Ca2+, scaling factors were defined in vitro and then verified by experiments in cultured neonatal myocytes. In adult rat myocytes using the La3+ method, intracellular Ca2+ concentration ([Ca2+]i) was 131 +/- 47 nM (n = 14) in quiescent cells; diastolic [Ca2+]i and systolic [Ca2+]i in myocytes stimulated at 1 Hz were 140 +/- 56 and 1,088 +/- 211 nM (n = 5), respectively. BCECF fluorescence was calibrated in situ by a method that prevented cellular hypercontracture and reported a pH value of 7.10 +/- 0.10 in cells stimulated at 1.5 Hz. An additional advantage of both methods is that the buffers employed prevented large changes in the redox state of intracellular pyridine nucleotides, thus preventing a change in cellular autofluorescence during the calibration procedure.

Estimation of intramitochondrial pCa and pH by fura-2 and 2,7 biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence

Isolated heart mitochondria hydrolyze the acetoxymethyl esters of the Ca2+-sensitive fluorescent probe fura-2 and the fluorescent pH indicator biscarboxyethyl-5(6)-carboxyfluorescein (BCECF). The free acid forms of both probes are retained in the matrix and their fluorescence can be used to monitor the pCa and pH, respectively, of this compartment. When fura-2 loaded rat heart myocytes are lysed with digitonin, a portion of the dye is retained in the mitochondrial fraction and its fluorescence reports the uptake and release of Ca2+ by the mitochondria. It is concluded that fura-2 and BCECF may report mitochondrial as well as cytosol parameters when the probes are used in intact cells.