Home>>Signaling Pathways>> Neuroscience>> Behavioral Neuroscience>>AT-121

AT-121 Sale

目录号 : GC42865

A dual μ-opioid and nociceptin receptor partial agonist

AT-121 Chemical Structure

Cas No.:2099681-31-7

规格 价格 库存 购买数量
100μg
¥839.00
现货
500μg
¥3,786.00
现货
1mg
¥6,304.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

AT-121 is a dual μ-opioid and nociceptin receptor partial agonist (Kis = 16.49 and 3.67 nM, respectively). It stimulates [35S]GTPγS binding to cell membranes expressing μ-opioid or nociceptin receptors (EC50s = 19.6 and 34.7 nM, respectively). AT-121 (0.003-0.03 mg/kg) decreases capsaicin-induced thermal allodynia without increasing scratching activity in rhesus monkeys in a dose-dependent manner. It lacks reinforcing effects, a marker of abuse potential, and reduces oxycodone, but not food pellet, reinforcement in a drug self-administration assay in rhesus monkeys when administered at doses ranging from 0.3 to 10 μg/kg per injection. AT-121 (0.01 or 0.03 mg/kg) does not induce hyperalgesia, a marker of tolerance development, in rhesus monkeys.

Chemical Properties

Cas No. 2099681-31-7 SDF
Canonical SMILES CC(C)[C@@H]1CC[C@H](N2CCC3(C(N(CCNS(N)(=O)=O)CC4=C3C=CC=C4)=O)CC2)CC1
分子式 C24H38N4O3S 分子量 462.6
溶解度 Chloroform: 10 mg/ml,DMF: miscible,DMSO: miscible,Ethanol: miscible,Ethanol:PBS (pH 7.2) (1:20): 50µ g/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1617 mL 10.8085 mL 21.6169 mL
5 mM 0.4323 mL 2.1617 mL 4.3234 mL
10 mM 0.2162 mL 1.0808 mL 2.1617 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Pain Wars: A New Hope

Neuron 2018 Dec 19;100(6):1280-1282.PMID:30571940DOI:10.1016/j.neuron.2018.11.045.

Nociceptin opioid peptide receptor agonists interact with mu-opioid receptor agonists for pain relief. A new study by Ding et al. (2018) examines a bifunctional nociceptin- and mu-opioid receptor agonist, AT-121, that provides analgesia without physiological side effects or abuse liability, offering a promising new hope toward better analgesics.

Nociceptin/Orphanin FQ Peptide Receptor-Related Ligands as Novel Analgesics

Curr Top Med Chem 2020;20(31):2878-2888.PMID:32384033DOI:10.2174/1568026620666200508082615.

Despite similar distribution patterns and intracellular events observed in the nociceptin/ orphanin FQ peptide (NOP) receptor and other opioid receptors, NOP receptor activation displays unique pharmacological profiles. Several researchers have identified a variety of peptide and nonpeptide ligands to determine the functional roles of NOP receptor activation and observed that NOP receptor- related ligands exhibit pain modality-dependent pain processing. Importantly, NOP receptor activation results in anti-nociception and anti-hypersensitivity at the spinal and supraspinal levels regardless of the experimental settings in non-human primates (NHPs). Given that the NOP receptor agonists synergistically enhance mu-opioid peptide (MOP) receptor agonist-induced anti-nociception, it has been hypothesized that dual NOP and MOP receptor agonists may display promising functional properties as analgesics. Accumulating evidence indicates that the mixed NOP/opioid receptor agonists demonstrate favorable functional profiles. In NHP studies, bifunctional NOP/MOP partial agonists (e.g., AT-121, BU08028, and BU10038) exerted potent anti-nociception via NOP and MOP receptor activation; however, dose-limiting adverse effects associated with the MOP receptor activation, including respiratory depression, itch sensation, physical dependence, and abuse liability, were not observed. Moreover, a mixed NOP/opioid receptor agonist, cebranopadol, presented promising outcomes in clinical trials as a novel analgesic. Collectively, the dual agonistic actions on NOP and MOP receptors, with appropriate binding affinities and efficacies, may be a viable strategy to develop innovative and safe analgesics.

Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse

J Neurosci Res 2022 Jan;100(1):191-202.PMID:32255240DOI:10.1002/jnr.24624.

Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.

Attenuated G protein signaling and minimal receptor phosphorylation as a biochemical signature of low side-effect opioid analgesics

Sci Rep 2022 May 3;12(1):7154.PMID:35504962DOI:10.1038/s41598-022-11189-6.

Multi-receptor targeting has been proposed as a promising strategy for the development of opioid analgesics with fewer side effects. Cebranopadol and AT-121 are prototypical bifunctional ligands targeting the nociceptin/orphanin FQ peptide receptor (NOP) and µ-opioid receptor (MOP) that elicit potent analgesia in humans and nonhuman primates, respectively. Cebranopadol was reported to produce typical MOP-related side effects such as respiratory depression and reward, whereas AT-121 appeared to be devoid of these liabilities. However, the molecular basis underlying different side effect profiles in opioid analgesics remains unknown. Here, we examine agonist-induced receptor phosphorylation and G protein signaling profiles of a series of chemically diverse mixed MOP/NOP agonists, including cebranopadol and AT-121. We found that these compounds produce strikingly different MOP phosphorylation profiles. Cebranopadol, AT-034 and AT-324 stimulated extensive MOP phosphorylation, whereas AT-201 induced selective phosphorylation at S375 only. AT-121, on the other hand, did not promote any detectable MOP phosphorylation. Conversely, none of these compounds was able to elicit strong NOP phosphorylation and low NOP receptor phosphorylation correlated with partial agonism in a GIRK-channel assay. Our results suggest a close correlation between MOP receptor phosphorylation and side effect profile. Thus, bifunctional MOP/NOP opioid ligands combining low efficacy G protein signaling at both NOP and MOP with no detectable receptor phosphorylation appear to be devoid of side-effects such as respiratory depression, abuse liability or tolerance development, as with AT-121.

Current and Future Therapeutic Options in Pain Management: Multi-mechanistic Opioids Involving Both MOR and NOP Receptor Activation

CNS Drugs 2022 Jun;36(6):617-632.PMID:35616826DOI:10.1007/s40263-022-00924-2.

Opioids are widely used in chronic pain management, despite major concerns about their risk of adverse events, particularly abuse, misuse, and respiratory depression from overdose. Multi-mechanistic opioids, such as tapentadol and buprenorphine, have been widely studied as a valid alternative to traditional opioids for their safer profile. Special interest was focused on the role of the nociceptin opioid peptide (NOP) receptor in terms of analgesia and improved tolerability. Nociceptin opioid peptide receptor agonists were shown to reinforce the antinociceptive effect of mu opioid receptor (MOR) agonists and modulate some of their adverse effects. Therefore, multi-mechanistic opioids involving both MOR and NOP receptor activation became a major field of pharmaceutical and clinical investigations. Buprenorphine was re-discovered in a new perspective, as an atypical analgesic and as a substitution therapy for opioid use disorders; and buprenorphine derivatives have been tested in animal models of nociceptive and neuropathic pain. Similarly, cebranopadol, a full MOR/NOP receptor agonist, has been clinically evaluated for its potent analgesic efficacy and better tolerability profile, compared with traditional opioids. This review overviews pharmacological mechanisms of the NOP receptor system, including its role in pain management and in the development of opioid tolerance. Clinical data on buprenorphine suggest its role as a safer alternative to traditional opioids, particularly in patients with non-cancer pain; while data on cebranopadol still require phase III study results to approve its introduction on the market. Other bifunctional MOR/NOP receptor ligands, such as BU08028, BU10038, and AT-121, are currently under pharmacological investigations and could represent promising analgesic agents for the future.