Home>>Signaling Pathways>> Others>>ART812

ART812 Sale

目录号 : GC64426

ART812 是一种口服有效的 DNA 聚合酶 Polθ 抑制剂,IC50 值为 7.6 nM。ART812 对基于细胞的微同源介导的末端连接 (MMEJ) 的 IC50 值为 240 nM。

ART812 Chemical Structure

Cas No.:2607138-82-7

规格 价格 库存 购买数量
1mg
¥2,200.00
现货
5 mg
¥9,450.00
现货
10mg
¥12,000.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ART812 is an orally active DNA polymerase Polθ inhibitor with an IC50 value of 7.6 nM. ART812 has an IC50 value of 240 nM for cell based microhomology-mediated end joining (MMEJ)[1][2].

ART812 (0-40 μM) elicits Polθ inhibitor sensitivity in MDA-MB-436 SHLD2 knockout cells[1].

ART812 (100 mg/kg; p.o. daily for 76 days) shows significant tumour inhibition in rats bearing established MDA-MB-436 BRCA1/SHLD2 defective tumours (volume 250-350 mm3)[1].

[1]. Zatreanu D, et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun. 2021 Jun 17;12(1):3636.
[2]. Peter BLENCOWE, et al. Preparation of heterocyclic compounds for use in the treatment of cancer. WO2021028643 A1.

Chemical Properties

Cas No. 2607138-82-7 SDF Download SDF
分子式 C19H16ClF4N3O4 分子量 461.79
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1655 mL 10.8274 mL 21.6549 mL
5 mM 0.4331 mL 2.1655 mL 4.331 mL
10 mM 0.2165 mL 1.0827 mL 2.1655 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Polθ Inhibition: An Anticancer Therapy for HR-Deficient Tumours

Int J Mol Sci 2022 Dec 24;24(1):319.PMID:36613762DOI:10.3390/ijms24010319.

DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target.

Discovery, Characterization, and Structure-Based Optimization of Small-Molecule In Vitro and In Vivo Probes for Human DNA Polymerase Theta

J Med Chem 2022 Oct 27;65(20):13879-13891.PMID:36200480DOI:10.1021/acs.jmedchem.2c01142.

Human DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, 22 (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, 43 (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ. The crystallographic data provides a basis for understanding the unique mechanism of inhibition of these compounds which is dependent on stabilization of a "closed" enzyme conformation. Additionally, the structural biology platform provided a basis for rational optimization based primarily on reduced ligand conformational flexibility.