Home>>Signaling Pathways>> Proteases>> Ser/Thr Protease>>Alirocumab (anti-PCSK9)

Alirocumab (anti-PCSK9) Sale

(Synonyms: 阿利库单抗,REGN 727(anti-PCSK9); SAR 236553(anti-PCSK9)) 目录号 : GC65044

Alirocumab (anti-PCSK9) works by inhibiting the PCSK9 protein, which binds to the low-density lipoprotein receptor (LDLR) and causes receptor degradation, removing less LDL cholesterol from the circulation.

Alirocumab (anti-PCSK9) Chemical Structure

Cas No.:1245916-14-6

规格 价格 库存 购买数量
1mg
¥3,500.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Alirocumab (anti-PCSK9) works by inhibiting the PCSK9 protein, which binds to the low-density lipoprotein receptor (LDLR) and causes receptor degradation, removing less LDL cholesterol from the circulation.

Chemical Properties

Cas No. 1245916-14-6 SDF Download SDF
别名 阿利库单抗,REGN 727(anti-PCSK9); SAR 236553(anti-PCSK9)
分子式 分子量
溶解度 储存条件 Store at 4°C, Do not freeze
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

PCSK9 Biology and Its Role in Atherothrombosis

Int J Mol Sci 2021 May 30;22(11):5880.PMID:34070931DOI:10.3390/ijms22115880.

It is now about 20 years since the first case of a gain-of-function mutation involving the as-yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR-dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and Alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD. While monoclonal antibodies sequester circulating PCSK9, inclisiran, a small interfering RNA, is a new drug that inhibits PCSK9 synthesis with the important advantage, compared with PCSK9 mAbs, to preserve its pharmacodynamic effects when administrated every 6 months. Here, we will focus on the major understandings related to PCSK9, from its discovery to its role in lipoprotein metabolism, involvement in atherothrombosis and a brief excursus on approved current therapies used to inhibit its action.

Insight into the Evolving Role of PCSK9

Metabolites 2022 Mar 17;12(3):256.PMID:35323699DOI:10.3390/metabo12030256.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the last discovered member of the family of proprotein convertases (PCs), mainly synthetized in hepatic cells. This serine protease plays a pivotal role in the reduction of the number of low-density lipoprotein receptors (LDLRs) on the surface of hepatocytes, which leads to an increase in the level of cholesterol in the blood. This mechanism and the fact that gain of function (GOF) mutations in PCSK9 are responsible for causing familial hypercholesterolemia whereas loss-of-function (LOF) mutations are associated with hypocholesterolemia, prompted the invention of drugs that block PCSK9 action. The high efficiency of PCSK9 inhibitors (e.g., Alirocumab, evolocumab) in decreasing cardiovascular risk, pleiotropic effects of other lipid-lowering drugs (e.g., statins) and the multifunctional character of other proprotein convertases, were the cause for proceeding studies on functions of PCSK9 beyond cholesterol metabolism. In this article, we summarize the current knowledge on the roles that PCSK9 plays in different tissues and perspectives for its clinical use.

PCSK9 inhibition in the management of familial hypercholesterolemia

J Cardiol 2018 Jan;71(1):1-7.PMID:28784313DOI:10.1016/j.jjcc.2017.07.002.

Familial hypercholesterolemia (FH) is a frequent hereditary metabolic disease characterized by high serum low-density lipoprotein (LDL) cholesterol concentration and premature atherosclerotic cardiovascular disease (ASCVD). The discovery of the LDL receptor as one of the causative genes of FH enabled us to understand the pathophysiology of FH and paved the way for developing statins. Similar to LDL receptor, discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) also created an opportunity for developing its inhibitors. Since PCSK9 degrades LDL receptor protein, inhibiting PCSK9 will be an effective strategy. Evolocumab and Alirocumab, anti-PCSK9 antibodies that inhibit binding between PCSK9 and LDL receptors, are now available in Japan. Adding an anti-PCSK9 antibody to standard therapy with statin alone or statin combined with ezetimibe further reduced serum LDL cholesterol levels by around 60% and they significantly decrease cardiovascular event incidence as compared with placebo. Additionally, the strong LDL cholesterol lowering effect of anti-PCSK9 antibody therapies has reportedly enabled the frequency of lipoprotein apheresis to be reduced or to be discontinued. As alternative strategies against PCSK9, antisense oligonucleotide agents that inhibit PCSK9 protein synthesis as well as a small interfering (or short interference) RNA (siRNA) for PCSK9 are also being developed. While relatively high cost can be given as a problem, PCSK9 inhibitors are able to reduce LDL cholesterol dramatically even in FH patients who could not achieve targets until now. To ensure that these drugs are given to the patients who really need them, it is necessary to raise the diagnosis rate and family screening has to be more actively conducted. Finally, it has been reported that PCSK9 is expressed not only in hepatocytes but also in other cells such as epithelial cells in small intestine and vascular smooth muscle cells in atherosclerotic plaque. Further research regarding extra-hepatic pathophysiology of PCSK9 is expected.

anti-PCSK9 Antibodies: A New Era in the Treatment of Dyslipidemia

Curr Pharm Des 2017;23(10):1484-1494.PMID:28137217DOI:10.2174/1381612823666170130155036.

The serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein (LDL) receptor (LDLR) and directs it to lysosomal degradation. This results in decreased numbers of LDLR available on the cell surface to bind LDL particles and remove them from the circulation which in turn leads to an increase in circulating LDL-cholesterol (LDL-C) concentrations. Since the role PCSK9 plays in LDLC metabolism has been discovered in 2003 there have been major efforts in finding efficient and safe methods to inhibit it. Amongst those the fully human anti-PCSK9 antibodies Alirocumab and evolocumab have been studied in a wide range of patients such as in those with statin intolerance, as add-on to statin therapy, as monotherapy and in patients with familial hypercholesterolemia and have been shown to decrease LDL-C overall by ~50-70%. Rates of achieving LDL-C goals, depending on individual risk, are up to 87 -98% of treated subjects. Multiple phase III studies with these drugs are already completed and cardiovascular endpoint trials are expected to be concluded by the end of 2016 and 2017 for evolocumab and Alirocumab, respectively. In 2015 both Alirocumab and evolocumab were approved for the treatment of hypercholesterolemia in the European Union and in the US. Preliminary data show an improvement in cardiovascular morbidity and mortality by ~50%. If the large ongoing endpoint trials confirm the cardiovascular efficacy and overall safety of these drugs, PCSK9 antibodies will revolutionarize lipid-lowering therapy.

PCSK9 Mutations in Familial Hypercholesterolemia: from a Groundbreaking Discovery to anti-PCSK9 Therapies

Curr Atheroscler Rep 2017 Oct 17;19(12):49.PMID:29038906DOI:10.1007/s11883-017-0684-8.

Purpose of review: In 2003, Abifadel et al. (Nat. Genet. 34:154-156, 2003) identified PCSK9, encoding proprotein convertase subtilisin/kexin type 9, as the third causal gene for autosomal dominant hypercholesterolemia. This review focuses on the main steps from this major breakthrough in familial hypercholesterolemia (FH) to the latest clinical trials with the anti-PCSK9 antibodies. Recent findings: The year 2015 was remarkable in cardiovascular disease through the field of cholesterol. Nearly 30 years after the discovery of statins, a new class of effective lipid-lowering drugs has emerged: the anti-PCSK9 antibodies. The discovery of the first gain-of-function mutations of PCSK9 in FH rapidly became the center of interest of researchers worldwide. Preclinical and clinical studies launched by pharmaceutical companies led to the first three anti-PCSK9 antibodies, two of which (evolocumab and Alirocumab) reduce LDL cholesterol levels by 50-60% and received FDA and European Medicines Agency approvals in 2015 on top of statin therapy. Recently, results of the Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER) trial, the outcome trial of evolocumab over 2.2 years, showed a reduction of 15-20% in the risk of major cardiovascular outcomes in high-risk patients receiving statin therapy. Results of ODYSSEY OUTCOMES trial, evaluating the effect of Alirocumab in 18,000 patients with established CVD are also eagerly awaited in 2018. The evolution of research on PCSK9, starting from the discovery of the first set of mutations in PCSK9 in FH in 2003, is an amazing example of successful translational research. It shows how rigorous and powered genetic analyses can lead to the discovery of a new class of lipid-lowering drugs that give hope in fighting high cholesterol levels and their cardiovascular complications.