Home>>Signaling Pathways>> Cancer Biology>>5'-deoxy-5-Fluorocytidine

5'-deoxy-5-Fluorocytidine Sale

(Synonyms: 5'-脱氧-5-氟胞苷) 目录号 : GC42503

An intermediate metabolite of capecitabine

5'-deoxy-5-Fluorocytidine Chemical Structure

Cas No.:66335-38-4

规格 价格 库存 购买数量
500mg
¥650.00
现货
1g
¥1,235.00
现货
5g
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5'-deoxy-5-Fluorocytidine is an intermediate metabolite of the DNA synthesis inhibitor capecitabine . Capecitabine is converted by carboxylesterase to 5'-deoxy-5-fluorocytidine in the liver, then by cytidine deaminase to 5'-deoxy-5-fluorouridine in the liver and tumor tissues, and finally, by thymidine phosphorylase to 5-fluorouracil in tumors. The cytotoxicity of this intermediate occurs only after conversion to 5-fluorouracil.

Chemical Properties

Cas No. 66335-38-4 SDF
别名 5'-脱氧-5-氟胞苷
Canonical SMILES C[C@H]1O[C@@H](N2C(N=C(N)C(F)=C2)=O)[C@H](O)[C@@H]1O
分子式 C9H12FN3O4 分子量 245.2
溶解度 DMF: 10 mg/ml,DMSO: 20 mg/ml,PBS (pH 7.2): 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.0783 mL 20.3915 mL 40.783 mL
5 mM 0.8157 mL 4.0783 mL 8.1566 mL
10 mM 0.4078 mL 2.0392 mL 4.0783 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Correlation Between the Metabolic Conversion of a Capecitabine Metabolite, 5'-deoxy-5-Fluorocytidine, and Creatinine Clearance

In Vivo 2020 Nov-Dec;34(6):3539-3544.PMID:33144465DOI:10.21873/invivo.12196.

Aim: Capecitabine is a prodrug that is metabolized to its active form, 5-fluorouracil (5-FU), in three enzymatic steps. This prospective pharmacokinetic study evaluated cytidine deaminase (CDA) activity, the second drug-metabolizing enzyme that generates 5'-deoxy-5-fluorouridine (5'-DFUR) from 5'-deoxy-5-Fluorocytidine (5'-DFCR), as well as creatinine clearance (CLcr). Patients and methods: Patients with colorectal cancer who received capecitabine plus oxaliplatin were selected. Pharmacokinetics of capecitabine and its metabolites, and CDA activity in plasma were analyzed. Results: Eighteen patients were examined. The area under the plasma concentration-time curve (AUC) of 5'-DFUR showed a significant inverse correlation with CLcr (p=0.003). The metabolic ratio, i.e. the ratios of the AUC of 5'-DFUR plus that of 5-FU to the AUC of 5'-DFCR, significantly increased when CLcr decreased (p=0.001) but did not depend on plasma CDA activity. Conclusion: Metabolism of 5'-DFCR to form 5'-DFUR increased as CLcr decreased but the mechanism remains unknown.

Chemotherapy-induced CDA expression renders resistant non-small cell lung cancer cells sensitive to 5'-deoxy-5-Fluorocytidine (5'-DFCR)

J Exp Clin Cancer Res 2021 Apr 19;40(1):138.PMID:33874986DOI:10.1186/s13046-021-01938-2.

Background: Pemetrexed (MTA) plus cisplatin combination therapy is considered the standard of care for patients with advanced non-small-cell lung cancer (NSCLC). However, in advanced NSCLC, the 5-year survival rate is below 10%, mainly due to resistance to therapy. We have previously shown that the fraction of mesenchymal-like, chemotherapy-resistant paraclone cells increased after MTA and cisplatin combination therapy in the NSCLC cell line A549. Cytidine deaminase (CDA) and thymidine phosphorylase (TYMP) are key enzymes of the pyrimidine salvage pathway. 5'-deoxy-5-Fluorocytidine (5'-DFCR) is a cytidine analogue (metabolite of capecitabine), which is converted by CDA and subsequently by TYMP into 5-fluorouracil, a chemotherapeutic agent frequently used to treat solid tumors. The aim of this study was to identify and exploit chemotherapy-induced metabolic adaptations to target resistant cancer cells. Methods: Cell viability and colony formation assays were used to quantify the efficacy of MTA and cisplatin treatment in combination with schedule-dependent addition of 5'-DFCR on growth and survival of A549 paraclone cells and NSCLC cell lines. CDA and TYMP protein expression were monitored by Western blot. Finally, flow cytometry was used to analyze the EMT phenotype, DNA damage response activation and cell cycle distribution over time after treatment. CDA expression was measured by immunohistochemistry in tumor tissues of patients before and after neoadjuvant chemotherapy. Results: We performed a small-scale screen of mitochondrial metabolism inhibitors, which revealed that 5'-DFCR selectively targets chemotherapy-resistant A549 paraclone cells characterized by high CDA and TYMP expression. In the cell line A549, CDA and TYMP expression was further increased by chemotherapy in a time-dependent manner, which was also observed in the KRAS-addicted NSCLC cell lines H358 and H411. The addition of 5'-DFCR on the second day after MTA and cisplatin combination therapy was the most efficient treatment to eradicate chemotherapy-resistant NSCLC cells. Moreover, recovery from treatment-induced DNA damage was delayed and accompanied by senescence induction and acquisition of a hybrid-EMT phenotype. In a subset of patient tumors, CDA expression was also increased after treatment with neoadjuvant chemotherapy. Conclusions: Chemotherapy increases CDA and TYMP expression thereby rendering resistant lung cancer cells susceptible to subsequent 5'-DFCR treatment.

A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5'-deoxy-5-Fluorocytidine, 5'-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma

Biomed Chromatogr 2010 Apr;24(4):374-86.PMID:19650151DOI:10.1002/bmc.1302.

A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5'-deoxy-5-Fluorocytidine (5'-DFCR), 5'-deoxy-5-fluorouracil (5'-DFUR), 5-fluorouracil (5-FU) and dihydro-5-fluorouracil (FUH(2)) in human plasma. A 200 microL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5-chlorouracil. A single-step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio-matrices. Volumes of 20 microL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 x 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile-2-propanol-tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5'-DFCR and 5'-DFUR, and from 50 to 5000 ng/mL for 5-FU and FUH(2) using a plasma sample of 200 microL. Correlation coefficients (r(2)) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between -4.41 and 3.65% with CV values less than 12.0% for capecitabine, between -7.00 and 6.59% with CV values less than 13.0 for 5'-DFUR, between -3.25 and 4.11% with CV values less than 9.34% for 5'-DFCR, between -5.54 and 5.91% with CV values less than 9.69% for 5-FU and between -4.26 and 6.86% with CV values less than 14.9% for FUH(2). The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients.

Hydrolysis of capecitabine to 5'-deoxy-5-Fluorocytidine by human carboxylesterases and inhibition by loperamide

J Pharmacol Exp Ther 2005 Jun;313(3):1011-6.PMID:15687373DOI:10.1124/jpet.104.081265.

Capecitabine is an oral prodrug of 5-fluorouracil that is indicated for the treatment of breast and colorectal cancers. A three-step in vivo-targeted activation process requiring carboxylesterases, cytidine deaminase, and thymidine phosphorylase converts capecitabine to 5-fluorouracil. Carboxylesterases hydrolyze capecitabine's carbamate side chain to form 5'-deoxy-5-Fluorocytidine (5'-DFCR). This study examines the steady-state kinetics of recombinant human carboxylesterase isozymes carboxylesterase (CES) 1A1, CES2, and CES3 for hydrolysis of capecitabine with a liquid chromatography/mass spectroscopy assay. Additionally, a spectrophotometric screening assay was utilized to identify drugs that may inhibit carboxylesterase activation of capecitabine. CES1A1 and CES2 hydrolyze capecitabine to a similar extent, with catalytic efficiencies of 14.7 and 12.9 min(-1) mM(-1), respectively. Little catalytic activity is detected for CES3 with capecitabine. Northern blot analysis indicates that relative expression in intestinal tissue is CES2 > CES1A1 > CES3. Hence, intestinal activation of capecitabine may contribute to its efficacy in colon cancer and toxic diarrhea associated with the agent. Loperamide is a strong inhibitor of CES2, with a K(i) of 1.5 muM, but it only weakly inhibits CES1A1 (IC(50) = 0.44 mM). Inhibition of CES2 in the gastrointestinal tract by loperamide may reduce local formation of 5'-DFCR. Both CES1A1 and CES2 are responsible for the activation of capecitabine, whereas CES3 plays little role in 5'-DFCR formation.

Rabeprazole intake does not affect systemic exposure to capecitabine and its metabolites, 5'-deoxy-5-Fluorocytidine, 5'-deoxy-5-fluorouridine, and 5-fluorouracil

Cancer Chemother Pharmacol 2019 Jun;83(6):1127-1135.PMID:30972456DOI:10.1007/s00280-019-03837-y.

Purpose: Several retrospective studies have shown that the antitumor efficacy of capecitabine-containing chemotherapy decreases when co-administered with a proton pump inhibitor (PPI). Although a reduction in capecitabine absorption by PPIs was proposed as the underlying mechanism, the effects of PPIs on capecitabine pharmacokinetics remain unclear. We prospectively examined the effects of rabeprazole on the pharmacokinetics of capecitabine and its metabolites. Methods: We enrolled patients administered adjuvant capecitabine plus oxaliplatin (CapeOX) for postoperative colorectal cancer (CRC) patients and metastatic CRC patients receiving CapeOX with/without bevacizumab. Patients receiving a PPI before registration were allocated to the rabeprazole group, and the PPI was changed to rabeprazole (20 mg/day) at least 1 week before the initiation of capecitabine treatment. On day 1, oral capecitabine (1000 mg/m2) was administered 1 h after rabeprazole intake. Oxaliplatin (and bevacizumab) administration on day 1 was shifted to day 2 for pharmacokinetic analysis of the first capecitabine dose. Plasma concentrations of capecitabine, 5'-deoxy-5-Fluorocytidine, 5'-deoxy-5-fluorouridine, and 5-fluorouracil were analyzed by high-performance liquid chromatography. Effects of rabeprazole on inhibition of cell proliferation by each capecitabine metabolite were examined with colon cancer cells (COLO205 and HCT116). Results: Five and 9 patients enrolled between September 2017 and July 2018 were allocated to rabeprazole and control groups, respectively. No significant effects of rabeprazole on area under the plasma concentration-time curve divided by capecitabine dose for capecitabine and its three metabolites were observed. Rabeprazole did not affect the proliferation inhibition of colon cancer cells by the respective capecitabine metabolites. Conclusion: Rabeprazole does not affect capecitabine pharmacokinetics.