5-Bromoindole
(Synonyms: 5-溴吲哚) 目录号 : GC677305-Bromoindole 是一种化学中间体,可用于合成 GSK-3 抑制剂和抗癌药物。
Cas No.:10075-50-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
5-Bromoindole is a chemical intermediate that can be used for the synthesis of GSK-3 inhibitors and anti-cancer agents[1][2].
[1]. Gunosewoyo H, et al. Characterization of maleimide-based glycogen synthase kinase-3 (GSK-3) inhibitors as stimulators of steroidogenesis. J Med Chem. 2013 Jun 27;56(12):5115-29.
[2]. Butler-FernÁndez KM, et al. Synthesis, Anti-Cancer and Anti-Migratory Evaluation of 3,6-Dibromocarbazole and 5-Bromoindole Derivatives. Molecules. 2019 Jul 24;24(15):2686.
Cas No. | 10075-50-0 | SDF | Download SDF |
别名 | 5-溴吲哚 | ||
分子式 | C8H6BrN | 分子量 | 196.04 |
溶解度 | 储存条件 | 4°C, protect from light | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 5.101 mL | 25.505 mL | 51.01 mL |
5 mM | 1.0202 mL | 5.101 mL | 10.202 mL |
10 mM | 0.5101 mL | 2.5505 mL | 5.101 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Synthesis, Anti-Cancer and Anti-Migratory Evaluation of 3,6-Dibromocarbazole and 5-Bromoindole Derivatives
Molecules 2019 Jul 24;24(15):2686.PMID:31344865DOI:10.3390/molecules24152686.
In this study, a new series of N-alkyl-3,6-dibromocarbazole and N-alkyl-5-bromoindole derivatives have been synthesized and evaluated in vitro as anti-cancer and anti-migration agents. Cytotoxic and anti-migratory effects of these compounds were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines and an insight on the structure-activity relationship was developed. Preliminary investigations of their anti-cancer activity demonstrated that several compounds have moderate antiproliferative effects on cancer cell lines with GI50 values in the range of 4.7-32.2 µM. Moreover, carbazole derivatives 10, 14, 15, 23, and 24 inhibit migration activity of metastatic cell line MDA-MB-231 in the range of 18-20%. The effect of compounds 10, 14, and 15 in extension of invadopodia and filopodia was evaluated by fluorescence microscopy and results demonstrated a reduction in actin-based cell extensions by compounds 10 and 15.
Biocatalysed halogenation of nucleobase analogues
Biotechnol Lett 2011 Oct;33(10):1999-2003.PMID:21660577DOI:10.1007/s10529-011-0655-z.
The synthesis of halogenated nucleosides and nucleobases is of interest due to their chemical and pharmacological applications. Herein, the enzymatic halogenation of nucleobases and analogues catalysed by microorganisms and by chloroperoxidase from Caldariomyces fumago has been studied. This latter enzyme catalysed the chlorination and bromination of indoline and uracil. Pseudomonas, Citrobacter, Aeromonas, Streptomyces, Xanthomonas, and Bacillus genera catalysed the chlorination and/or bromination of indole and indoline. Different products were obtained depending on the substrate, the biocatalyst and the halide used. In particular, 85% conversion from indole to 5-Bromoindole was achieved using Streptomyces cetonii.
Antimicrobial photodynamic inactivation of wastewater microorganisms by halogenated indole derivative capped zinc oxide
Environ Res 2022 Nov;214(Pt 3):113905.PMID:35948149DOI:10.1016/j.envres.2022.113905.
Novel 5-Bromoindole (5B)-capped zinc oxide (ZnO) nanoparticles (5BZN) were synthesized to improve the antibacterial, antibiofilm, and disinfection processes for the control of microorganisms in wastewater treatment. When exposed to 5BZN, the biofilm density and cell attachment were reduced dramatically, as measured by scanning electron microscopy (SEM). The 5BZN were also investigated for photodynamic treatment of multidrug-resistant (MDR) bacteria and toxicity. The combination of 5B and ZnO exhibited strong antibacterial and antibiofilm activities against MDR bacteria even at low doses (20 μg/mL). After 12.5 mW/cm2 blue LED irradiation, the composite 5BZN showed superior photodynamic inactivation of two wastewater MDR, Enterobacter tabaci E2 and Klebsiella quasipneumoniae SC3, with cell densities reduced by 3.9 log CFU/mL and 4.7 log CFU/mL, respectively, after 120 min. The mechanism of bacterial inactivation was studied using a scavenging investigation, and H2O2 was identified mainly as the reactive species for bacterial inactivation. The 5BZN exhibited higher photodynamic inactivation towards the total coliform bacteria in wastewater effluents under a blue LED light intensity of 12.5 mW/cm2 with almost complete inactivation of the coliform bacteria cells within 40 min. Furthermore, when 5BZN (100 mg/L) was added to the reactor, the level of tetracycline antibiotic degradation was increased by 63.6% after 120 min. The toxicity test, animal model nematode studies and seed germination assays, showed that 5BZN is harmless, highlighting its tremendous potential as a self-healing agent in large-scale photodynamic disinfection processes.
Improved synthesis of aryltrialkoxysilanes via treatment of aryl Grignard or lithium reagents with tetraalkyl orthosilicates
J Org Chem 2004 Nov 26;69(24):8305-14.PMID:15549801DOI:10.1021/jo048667h.
General reaction conditions for the synthesis of aryl(trialkoxy)silanes from aryl Grignard and lithium reagents and tetraalkyl orthosilicates (Si(OR)(4)) have been developed. Ortho-, meta-, and para-substituted bromoarenes underwent efficient metalation and silylation at low temperature to provide aryl siloxanes. Mixed results were obtained with heteroaromatic substrates: 3-bromothiophene, 3-bromo-4-methoxypyridine, 5-Bromoindole, and N-methyl-5-bromoindole underwent silylation in good yield, whereas a low yield of siloxane was obtained from 2-bromofuran, and 2-bromopyridine failed to give silylated product. The synthesis of siloxanes via organolithium and magnesium reagents was limited by the formation of di- and triarylated silanes (Ar(2)Si(OR)(2) and Ar(3)SiOR, respectively) and dehalogenated (Ar-H) byproducts. Silylation at low temperature gave predominantly monoaryl siloxanes, without requiring a large excess of the electrophile. Optimal reaction conditions for the synthesis of siloxanes from aryl Grignard reagents entailed addition of arylmagnesium reagents to 3 equiv of tetraethyl- or tetramethyl orthosilicate at -30 degrees C in THF. Aryllithium species were silylated using 1.5 equiv of tetraethyl- or tetramethyl orthosilicate at -78 degrees C in ether.
Synthesis of Polysubstituted Cyclopentene and Cyclopenta[ b]carbazole Analogues from Unsymmetrical 4-Arylidene-3,6-diarylhex-2-en-5-ynal and Indole Derivatives via an Iodine Mediated Electrocyclization Reaction
J Org Chem 2019 Mar 15;84(6):3036-3044.PMID:30359006DOI:10.1021/acs.joc.8b02168.
An efficient method for the synthesis of polysubstituted cyclopentene and cyclopenta[ b]carbazole derivatives through the iodine-promoted electrocyclization of substituted indoles and 4-arylidene-3,6-diarylhex-2-en-5-ynal derivatives is reported. Polysubstituted cyclopentene derivatives were produced through 4π electrocyclization reactions with indole, 7-methylindole, and 5-Bromoindole as coupling partners, whereas cyclopenta[ b]carbazole derivatives were produced via 6π electrocyclization in the case of methoxy (-OMe)-substituted indoles. The methods reported herein diastereo- and regioselectively proceed under straightforward and mild conditions.