Home>>Signaling Pathways>> Others>> Others>>4-Nonylphenol polyethoxylate (4-Nonylphenol polyethoxylate)

4-Nonylphenol polyethoxylate (4-Nonylphenol polyethoxylate) Sale

(Synonyms: 壬基酚聚氧乙烯醚, 4-Nonylphenol polyethoxylate; Nonoxinol-9; Nonoxynol ) 目录号 : GC30310

4-壬基酚聚乙氧基化物(4-Nonylphenol polyethoxylate)是一种有机化合物,是一种非离子表面活性剂;因其杀精特性而广泛用于避孕药。

4-Nonylphenol polyethoxylate (4-Nonylphenol polyethoxylate) Chemical Structure

Cas No.:26027-38-3

规格 价格 库存 购买数量
1g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

4-Nonylphenol polyethoxylate is an organic compound that is a nonionic surfactant; widely used in contraceptives for its spermicidal properties.

Chemical Properties

Cas No. 26027-38-3 SDF
别名 壬基酚聚氧乙烯醚, 4-Nonylphenol polyethoxylate; Nonoxinol-9; Nonoxynol
Canonical SMILES CCCCCCCCCC1=CC=C(OCCO)C=C1.[n]
分子式 分子量
溶解度 DMSO : ≥ 45 mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Trophodynamic behavior of 4-nonylphenol and nonylphenol polyethoxylate in a marine aquatic food web from Bohai Bay, north China: comparison to DDTs

4-Nonylphenol (4-NP) is of particular concern because of its ubiquity in aquatic environment and its endocrine-disrupting effects in aquatic organisms. On the basis of its octanol-water partition coefficient (104.6), it has a potential to bioaccumulate in aquatic food webs. However, there are no reported field studies on the trophodynamics of 4-NP and its precursor, nonylphenol polyethoxylate (NPEOs) surfactants, in aquatic food webs. This study reports the trophodynamics of 4-NP and NPEOs (4 < s < 16) in a marine aquatic food web from Bohai Bay, North China. 4-NP and NPEOs (4 < s < 16) were determined in 14 marine species including plankton, benthic invertebrates, fish, and marine birds. This paper provides the first report on the occurrence of NPEOs with s > 5 in marine biota. Co-analysis of DDTs in all samples allowed a direct comparison of the bioaccumulation behavior of DDTs with that of NP and NPEOs. The lipid equivalent concentration of DDE and 2,2-bis(chlorophenyl)-1-chloroethylene (DDMU) increased with increasing trophic level, and the trophic level was determined by stable isotope ratios. The trophic magnification factors (TMFs) of DDE and DDMU were 3.26 and 3.7, respectively. Lipid equivalent concentrations of 4-NP and of all NPEOs did not exhibit a statistically significant correlation with trophic levels in the food web, and the TMF of NP was 0.83, which was similar to those of all NPEOs (0.45-1.22). These results show that in the studied aquatic food web, there was no trophic magnification for 4-NP and NPEOs, whereas DDE and DDMU biomagnified.

Alteration of hepatic anti-oxidant systems by 4-nonylphenol, a metabolite of alkylphenol polyethoxylate detergents, in Far Eastern catfish Silurus asotus

Objectives: This study aimed to estimate the effects of 4-nonylphenol (NP), a ubiquitously present surfactant in aquatic environments, on the anti-oxidant systems of the liver in the Far Eastern catfish Silurus asotus.
Methods: Changes in biochemical parameters involved in glutathione (GSH)-related and other anti-oxidant systems were analyzed following 4 weeks of 4-NP administration (0.1 and 1.0 mg/kg diet) via a formulated diet to catfish.
Results: 4-NP exposure induced an elevation in hepatic lipid peroxide levels and an accompanying decrease in reduced state GSH after 2 weeks, suggesting pro-oxidant effects of the chemical in catfish. This oxidative stress was associated with an inhibition of the GSH-utilizing enzyme glutathione peroxidase at the same time point. This inhibition was restored after 4 weeks. The activities of other anti-oxidant enzymes, i.e., glutathione reductase, superoxide dismutase and catalase were increased after 4 weeks. These enzyme increases occurred more strongly at the higher 4-NP concentration (1.0 mg/kg diet).
Conclusions: 4-NP given to catfish at 0.1 to 1.0 mg/kg diet, concentrations relevant to environmental levels, depletes the endogenous anti-oxidant molecule GSH and temporarily inhibits GSH-related anti-oxidant enzymes. Such declines in anti-oxidant capacity and elevated oxidative stress seem to be compensated eventually by subsequent activation of various anti-oxidant enzyme systems.

Environmental conditions affecting re-release from particulate matter of 4-Nonylphenol into an aqueous medium

4-nonylphenol is a persistent organic pollutant with endocrine-disrupting properties. A nonpolar product of microbial degradation derived from the surfactant nonylphenol polyethoxylate, 4-nonylphenol is capable of long-range transport attached to particulates. Bioactive concentrations of 4-nonylphenol have been found in the surface water, soils, snow, and particulate matter of the Eastern Sierra Nevada Mountains (USA) hundreds of miles from their origins. As a result of particulate deposition, seasonal and glacial snow pack concentrations measured 20 to 100 times higher than in surface waters. Batch desorption assays were run on particulate matter dosed with 4-nonylphenol. Desorption was measured in 63 to 500 μm particles under 2 different temperature conditions with varying fractions of organic carbon in turbulent or undisturbed states. Lower temperatures (4 °C) decreased the mean percentage of 4-nonylphenol released from particulates in disturbed and undisturbed conditions, whereas the mean percentage of 4-nonylphenol released at 20 °C was reduced by agitation. The effect of agitation at 4 °C was not practically or statistically significant. Particulates with a higher percentage of organic carbon (75%) released very little of the bound 4-nonylphenol (0.53%) compared with particulates containing 4 to 5% of organic carbon that released up to 13%. Larger particles released the least amount of 4-nonylphenol, whereas smaller particles released the most amount. Water and sediment samples taken from below the Palisades Glacier in the Sierra Nevada Mountains showed the greatest 4-nonylphenol concentrations directly below the glacier, implying that glacial particulates will release adsorbed 4-nonylphenol. Environ Toxicol Chem 2019;38:350-360. ? 2018 SETAC.

Effects of 4-nonylphenol on oxidant/antioxidant balance system inducing hepatic steatosis in male rat

An emerging literature suggests that early life exposure to 4-nonylphenol (4-NP), a widespread endocrine disrupting chemical, may increase the risk of metabolic syndrome. In this study, we investigated the hypothesis that intraperitoneal administration of 4-NP induces hepatic steatosis in rat. 24 male Sprague-Dawley rats were administered with 4-NP (0, 2, 10 and 50 mg/kg b.wt) in corn oil for 30 days. Liver histology, biochemical analysis and gene expression profiling were examined. After treatment, abnormal liver morphology and function were observed in the 4-NP-treated rat, and significant changes in gene expression an indicator of hepatic steatosis and apoptosis were observed compared with controls. Up-regulated genes involved in apoptosis, hepatotoxity and oxidative stress, increased ROS and decrease of antioxidant enzyme were observed in the 4-NP exposed rat. Extensive fatty accumulation in liver section and elevated serum GOT, GPT, LDH and γ-GT were also observed. Incidence and severity of liver steatosis was scored and taken into consideration (steatosis, ballooning and lobular inflammation). Hepatocytes apoptosis could promote NAFLD progression; Fas/FasL, TNF-α and Caspase-9 mRNA activation were important contributing factors to hepatic steatosis. These findings provide the first evidence that 4-NP affects the gene expression related to liver hepatotoxicity, which is correlated with hepatic steatosis.

Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source

4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography-mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L(-1)) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring-(14)C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of (14)CO2, proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate.