Home>>3-Phenoxybenzoic acid

3-Phenoxybenzoic acid Sale

(Synonyms: 3-苯氧基苯甲酸,3-PBA) 目录号 : GC60508

3-phenoxybenzoic acid (3-PBA), an intermediate metabolite of pyrethroids, is more toxic than its parent compounds and has been detected in milk, soil, and human urine.

3-Phenoxybenzoic acid Chemical Structure

Cas No.:3739-38-6

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

3-phenoxybenzoic acid (3-PBA), an intermediate metabolite of pyrethroids, is more toxic than its parent compounds and has been detected in milk, soil, and human urine.

[1] Jiayuan Zhao, et al. Ecotoxicol Environ Saf. 2020 Feb;189:109953.

Chemical Properties

Cas No. 3739-38-6 SDF
别名 3-苯氧基苯甲酸,3-PBA
Canonical SMILES O=C(O)C1=CC=CC(OC2=CC=CC=C2)=C1
分子式 C13H10O3 分子量 214.22
溶解度 DMSO : 43mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.6681 mL 23.3405 mL 46.681 mL
5 mM 0.9336 mL 4.6681 mL 9.3362 mL
10 mM 0.4668 mL 2.334 mL 4.6681 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The pyrethroids metabolite 3-Phenoxybenzoic acid induces dopaminergic degeneration

Sci Total Environ 2022 Sep 10;838(Pt 2):156027.PMID:35605864DOI:10.1016/j.scitotenv.2022.156027.

Exposure to pyrethroids, a significant class of the most widely used agricultural chemicals, has been associated with an increased risk of Parkinson's disease (PD). However, although many different pyrethroids induce roughly the same symptoms of Parkinsonism, the underlying mechanisms remain unknown. To find the shared key features among these mechanisms, we focused on 3-Phenoxybenzoic acid (3-PBA), a common and prominent metabolite of most pyrethroids produced via hydrolysis by CEs in mammals. To determine the contribution of 3-PBA to the initiation and progression of PD, we performed in vivo and in vitro experiments, respectively, and found that 3-PBA not only accumulates in murine brain tissues over time but also further induces PD-like pathologies (increased α-syn and phospho-S129, decreased TH) to the same or even greater extent than the precursor pyrethroid. A before-after study of PET-DAT in the same mice revealed that low concentrations of 3-PBA (0.5 mg/kg) could paradoxically cause DAT to increase (22.46% higher than pre-drug test). The intervention of DAT inhibitors and activators respectively alleviated and enhanced the dopaminergic toxicity of 3-PBA, indicating that 3-PBA interacts with DAT. In particular, low concentrations of 3-PBA increase the DAT, which in turn induces 3-PBA to enter the dopaminergic neurons to exert toxic effects. Finally, we described a mechanism underlying this potential role of 3-PBA in the pathological aggregation of α-syn. Specifically, 3-PBA was found to dysregulate C/EBP β levels and further anomalously activate AEP in vivo and in vitro, accompanied by increased accumulation of pathologically cleaved α-syn (N103 fragments) and accelerated α-syn aggregation. All these results suggest that 3-PBA exposure could mimic the pathological and pathogenetic features of PD, showing that this metabolite is a key pathogenic compound in pyrethroid-related pathological effects and a possible dopamine neurotoxin. Additionally, our findings provide a crucial reference for the primary prevention of PD.

Urinary 3-Phenoxybenzoic acid (3-PBA) levels and changes in hematological parameters in Korean adult population: A Korean National Environmental Health Survey (KoNEHS) 2012-2014 analysis

Int J Hyg Environ Health 2022 Jun;243:113988.PMID:35640467DOI:10.1016/j.ijheh.2022.113988.

Pyrethroid insecticides have been broadly used as pest control in agriculture and residential spaces, exerting high effectiveness of insecticidal property and relatively low toxicity to humans. Several animal studies suggested that exposure to pyrethroids may induce hematological abnormalities, thereby altering the number of blood cells and resulting in blood disorders. However, no epidemiologic study has reported on the effect of pyrethroid insecticide exposure on hematological changes, except for occupational exposure. This study aimed to investigate the effect of urinary 3-Phenoxybenzoic acid (3-PBA) concentrations on hematological parameters in a representative South Korean adult population. We analyzed data from 6296 adults enrolled in the Korean National Environmental Health Survey (2012-2014). We employed multiple linear regression analysis to evaluate the association of urinary 3-PBA levels with eight hematological profiles: white blood cells (WBCs), red blood cells (RBCs), hemoglobin, hematocrit, platelets, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). The urinary 3-PBA levels were negatively associated with WBC, RBC, and hemoglobin levels and positively associated with MCV levels. The direction and magnitude of the association between the 3-PBA and hematological parameters varied according to sex and age. The adverse effects of 3-PBA on hematological parameters were distinctive among males aged 60 years and older. In this age group, 3-PBA levels were negatively associated with the WBC, RBC, hemoglobin, hematocrit, and MCHC levels among males. This study is the first to verify that urinary 3-PBA concentrations at the levels found in a Korean population are associated with blood parameters. This finding merits further investigation to understand the impact of 3-PBA on human blood function and public health.

Co-metabolic enzymes and pathways of 3-Phenoxybenzoic acid degradation by Aspergillus oryzae M-4

Ecotoxicol Environ Saf 2020 Feb;189:109953.PMID:31759741DOI:10.1016/j.ecoenv.2019.109953.

As an intermediate metabolite of pyrethroids, 3-Phenoxybenzoic acid (3-PBA) is more toxic than its parent compounds and has been detected in milk, soil, and human urine. 3-PBA can be metabolized through microbial degradation, but the microbial co-metabolic enzymes and pathways involved in 3-PBA degradation are unclear. This study investigated the enzymes types and possible pathways in the co-metabolic degradation of 3-PBA by Aspergillus oryzae M-4. The enzymes involved in co-metabolic degradation of 3-PBA and its intermediate metabolites were induced, and existed extracellularly and intracellularly except the catechol-degrading enzyme. Inhibitors and inducers of these oxidases were used to examine the enzymes required for co-metabolic degradation of 3-PBA and its intermediate metabolites. 3-PBA is hydroxylated to produce 3-hydroxy-5-phenoxy benzoic acid through the catalytic actions of lignin peroxidase (LiP). Phenol and gallic acid, the metabolites of 3-PBA, are produced via cleavage of an ether bond under the catalytic actions of cytochrome P450 (CYP450) and LiP. Phenol can be converted to catechol by LiP; catechol and gallic acid are cleaved to form long-chain olefin acid or olefin aldehyde by dioxygenase and LiP. In corn flour, some of these enzyme activators such as FeCl3, 4-cumaric acid, veratryl alcohol and sodium periodate appeared to improve 3-PBA degradation. The results provide a reliable pathway and characteristics for co-metabolic microbial degradation of 3-PBA in food and the environment.

Adsorption Behavior of 3-Phenoxybenzoic acid by Lactobacillus Plantarum and Its Potential Application in Simulated Digestive Juices

Int J Mol Sci 2022 May 22;23(10):5809.PMID:35628620DOI:10.3390/ijms23105809.

3-PBA is a major degradation intermediate of pyrethroids. Its widespread existence in the environment poses a severe threat to the ecosystem and human health. This study evaluated the adsorption capacity of L. plantarum RS20 toward 3-PBA. Batch adsorption experiments indicated that the optimal adsorption conditions were a temperature of 37 °C and initial pH of 6.0-8.0, under which the removal rate was positively correlated with the cell concentration. In addition, there was no link between the incubation time and adsorption rate. The kinetic study showed that the adsorption process fitted well with the pseudo-second-order model, and the adsorption isotherms could be described by both Langmuir and Freundlich equations. Heat and acid treatments showed that the ability of strain RS20 in removing 3-PBA was independent of microbial vitality. Indeed, it was involved with chemisorption and physisorption via the cell walls. The cell walls made the highest contribution to 3-PBA removal, according to the adsorption experiments using different cellular components. This finding was further reconfirmed by SEM. FTIR spectroscopy analysis indicated that carboxyl, hydroxyl, amino groups, and -C-N were the functional sites for the binding of 3-PBA. The co-culture experiments showed that the adsorption of strain RS20 enhanced the degradation of 3-PBA by strain SC-1. Strain RS20 could also survive and effectively remove 3-PBA in simulated digestive juices. Collectively, strain RS20 could be employed as a biological detoxification agent for humans and animals by eliminating 3-PBA from foods, feeds, and the digestive tract in the future.

Synthetic pyrethroids common metabolite 3-Phenoxybenzoic acid induces caspase-3 and Bcl-2 mediated apoptosis in human hepatocyte cells

Drug Chem Toxicol 2022 Sep;45(5):1971-1977.PMID:33706615DOI:10.1080/01480545.2021.1894720.

Synthetic pyrethroids are a group of insecticides frequently used in public health and agriculture, and 3-PBA is a common metabolite of them. Although the liver is the primary organ responsible for metabolizing many compounds including pesticides, to the authors' knowledge there have been no studies on the direct hepatotoxic effects of 3-PBA. Therefore, this study aimed to investigate the possible hepatotoxic effects of 3-PBA on a Human Hepatoma Cell Line (HepG2) and the underlying apoptotic mechanisms. Firstly, an LC50 of 1041.242 µM was calculated for 3-PBA by using the WST-1 test with concentrations ranging between 1 µM and 10 mM. Following that, the HepG2 cells in the experimental group were exposed to 3 different concentrations of 3-PBA (1/5 LC50, 1/10 LC50 and 1/20 LC50) for 24 hours. The apoptotic mechanism was evaluated by using flow cytometry, and immunofluorescence assays for Caspase 3 and Bcl-2. In the flow cytometry assay, the total number of apoptotic cells increased in a dose dependent manner (p < 0.05). In the immunofluorescence assay, the Caspase 3 protein showed strong immunoreactivity in the experimental groups, while the reaction to the Bcl-2 protein was minimal. These results demonstrated that 3-PBA has a significant hepatotoxic effect on HepG2 cells and induces apoptosis via the regulation of Caspase-3 and Bcl-2. Furthermore, our results could further the understanding of the fundamental molecular mechanisms of 3-PBA hepatotoxicity. More studies are needed to determine the effects of long-term exposure to 3-PBA and also the molecular mechanisms underlying hepatotoxicity.