Home>>Natural Products>>3-Methylpyrazole

3-Methylpyrazole Sale

(Synonyms: 3-甲基吡唑) 目录号 : GC30469

3-Methylpyrazole (3-MP) is a weak or non-inhibitor of alcohol dehydrogenase.

3-Methylpyrazole Chemical Structure

Cas No.:1453-58-3

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥491.00
现货
1g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

3-Methylpyrazole (3-MP) is a weak or non-inhibitor of alcohol dehydrogenase.

Chemical Properties

Cas No. 1453-58-3 SDF
别名 3-甲基吡唑
Canonical SMILES CC1=NNC=C1
分子式 C4H6N2 分子量 82.1
溶解度 Water : 25 mg/mL (304.51 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 12.1803 mL 60.9013 mL 121.8027 mL
5 mM 2.4361 mL 12.1803 mL 24.3605 mL
10 mM 1.218 mL 6.0901 mL 12.1803 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

2-Aminomethylthieno[3,2-d]pyrimidin-4(3H)-ones bearing 3-methylpyrazole hinge binding moiety: Highly potent, selective, and time-dependent inhibitors of Cdc7 kinase

In order to increase the success rate for developing new Cdc7 inhibitors for cancer therapy, we explored a new chemotype which can comply with the previously-constructed pharmacophore model. Substitution of a pyridine ring of a serendipitously-identified Cdc7 inhibitor 2b with a 3-methylpyrazole resulted in a 4-fold increase in potency and acceptable kinase selectivity, leading to the identification of thieno[3,2-d]pyrimidin-4(3H)-one as an alternative scaffold. Structure-activity relationship (SAR) study revealed that incorporation of a substituted aminomethyl group into the 2-position improved kinase selectivity. Indeed, a pyrrolidinylmethyl derivative 10c was a potent Cdc7 inhibitor (IC50=0.70nM) with high selectivity (Cdk2/Cdc7≥14,000, ROCK1/Cdc7=200). It should be noted that 10c exhibited significant time-dependent Cdc7 inhibition with slow dissociation kinetics, cellular pharmacodynamic (PD) effects, and COLO205 growth inhibition. Additionally, molecular basis of high kinase selectivity of 10c is discussed by using the protein structures of Cdc7 and Cdk2.

Alteration in the plasma concentration of a DAAO inhibitor, 3-methylpyrazole-5-carboxylic acid, in the ketamine-treated rats and the influence on the pharmacokinetics of plasma D-tryptophan

A determination method for 3-methylpyrazole-5-carboxylic acid (MPC), an inhibitor of D-amino acid oxidase (DAAO), in rat plasma was developed by using high-performance liquid chromatography-mass spectrometry (LC-MS). The structural isomer of MPC, 3-methylpyrazole-4-carboxylic acid, was used as an internal standard, and the intra- and inter-day accuracies and precisions were satisfactory for the determination of plasma MPC.Next, the LC-MS method was applied to determine the plasma MPC concentration in ketamine (Ket)-treated rats after intraperitoneal administration of MPC (5.0 or 50 mg·kg(-1)). The C(max) value of plasma MPC concentration in the Ket-treated rats was significantly higher than that in the control group when a high dose of MPC (50 mg·kg(-1)) was administered. In addition, it was found that plasma D-tryptophan (D-Trp) concentration in Ket-treated rats administered D-Trp was not significantly increased by MPC, suggesting that the DAAO-inhibitory effect of MPC is attenuated in Ket-treated rats.

A hydrogen-bonded chain of rings in 5-amino-1-(4-methoxybenzoyl)-3-methylpyrazole and a three-dimensional hydrogen-bonded framework in 5-amino-3-methyl-1-(2-nitrobenzoyl)pyrazole

The molecules of 5-amino-1-(4-methoxybenzoyl)-3-methylpyrazole, C(12)H(13)N(3)O(2), (I), and 5-amino-3-methyl-1-(2-nitrobenzoyl)pyrazole, C(11)H(10)N(4)O(3), (II), both contain intramolecular N-H...O hydrogen bonds. The molecules of (I) are linked into a chain of rings by a combination of N-H...N and N-H...pi(arene) hydrogen bonds, while those of (II) are linked into a three-dimensional framework structure by N-H...N and C-H...O hydrogen bonds.

Coumarin derivatives as inhibitors of d-amino acid oxidase and monoamine oxidase

d-Amino acid oxidase (DAAO) oxidises d-amino acids to ultimately produce the corresponding α-keto acids. The DAAO substrate, d-serine, is a co-agonist at NMDA receptors, while NMDA receptor hypo-function has been implicated in the pathophysiology of schizophrenia. Through the modulation of d-serine levels, the inhibition of DAAO represents a strategy to increase NMDA receptor function, and thus a potential treatment for schizophrenia. Literature reports that 3-hydroxycoumarin is a potent inhibitor of DAAO and represents an ideal lead for the development of novel DAAO inhibitors. Based on this, the present study investigated DAAO inhibition by a series of synthetic and commercially available coumarin derivatives. Due to structural similarity to coumarin, a synthetic series of 3,4-dihydroisoquinolin-1(2H)-one derivatives has also been included in this study. The results show that among 37 compound evaluated, four inhibit porcine kidney DAAO with IC50 < 10 ?M. The most potent inhibitors are 3,7-dihydroxycoumarin and 6,7-dihydroxycoumarin with an IC50 values of 0.167 and 0.224 ?M, respectively. These values are an improvement on that of the reference DAAO inhibitor, 3-methylpyrazole-5-carboxylic acid (IC50 = 1.88 ?M). Coumarin compounds are also known to inhibit the monoamine oxidase (MAO) enzymes, which are well established targets for the treatment of depression and Parkinson's disease. As DAAO and MAO are flavoenzymes, off-target inhibition may occur. The series were thus evaluated as potential MAO inhibitors, and a number of high potency inhibitors were identified. Seven compounds inhibit the recombinant human MAOs with IC50 < 0.1 ?M, with the most potent MAO-A and MAO-B inhibitors exhibiting IC50 values of 0.033 and 0.012 ?M, respectively. This is significantly more potent than the reference inhibitors, curcumin, isatin and toloxatone. This study concludes that active DAAO and MAO inhibitors may serve as novel leads for the design of compounds that may find future application in the treatment of neuropsychiatric (e.g. schizophrenia, depression) and neurodegenerative disorders (e.g. Parkinson's disease).

Determination of 4-methylpyrazole in plasma using solid phase extraction and HPLC

A rapid method for the determination of 4-methylpyrazole in plasma is described. Internal standard (3-methylpyrazole) is added to the plasma which is subsequently applied to a BondElut SCX column. After washing the column the 3- and 4-methylpyrazoles are eluted with a phosphate buffer and analyzed by isocratic reversed-phase high performance liquid chromatography with UV detection. The concentration of 4-methylpyrazole is calculated from the 4-methylpyrazole/3-methylpyrazole peak height ratio. The method is linear between 2.5 and 100 mumol/L with a within-day precision (CV) of 2.2% (n = 10) and a day-to-day precision of 2.8% (n = 30). The sensitivity is sufficient for analysis of plasma levels in the low micromolar range.